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In quenched QCD the Polyakov loop is an order parameter of the deconfinement transition, but
with decreasing quark mass, the peak in the Polyakov loop susceptibility becomes less pro-
nounced, and it loses its interpretation as an indicator for deconfinement. For this N f = 2+ 1
HISQ study, we fix the strange quark mass ms at its physical value and investigate the depen-
dence of the Polyakov loop on the light quark mass ml in the range ms/ml = 27−160, following
ml toward the chiral limit. In particular we will look how the inflection point and susceptibility
behave as we decrease ml , to see whether one finds any indication of a crossover, and therefore
whether the Polyakov loop is sensitive to the chiral phase transition. Preliminary results show no
signal of a crossover from the real part of the Polyakov loop in the vicinity of the chiral crossover.
Closely related is an investigation of Polyakov loop correlations and the Debye mass in this limit.
Preliminary results suggest little or no dependence on ml .

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:dclarke@physik.uni-bielefeld.de
mailto:okacz@physik.uni-bielefeld.de
mailto:karsch@physik.uni-bielefeld.de
mailto:alahiri@physik.uni-bielefeld.de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
4

Polyakov Loops in the Chiral Limit David A. Clarke

1. The Polyakov loop

For lattice QCD in a finite volume N3
σ ×Nτ , the thermal Wilson line L~x, the Polyakov loop P~x,

and its spatial average P are given by

L~x ≡∏
τ

U4(~x,τ), P~x ≡
1
3

trL~x, and P≡ 1
N3

σ

∑
~x

P~x, (1.1)

respectively. In general we define a susceptibility χO for an intensive observable O as

χO = N3
σ

(〈
O2〉−〈O〉2) . (1.2)

The Polyakov loop susceptibility and the susceptibility of the real part of the Polyakov loop are then
χ |P| and χReP. At low temperatures with static quarks in the infinite volume limit, the Polyakov
loop expectation value 〈|P|〉 is zero due to the global Z3 symmetry of the gauge action. At higher
temperatures this center symmetry is spontaneously broken, and 〈|P|〉 acquires a nonzero value,
signalling a finite static quark-antiquark free energy at large separations, and hence deconfinement.
At finite Nσ , 〈|P|〉 as a function of temperature has an inflection point, and the slope at this point
diverges in the infinite volume limit. The susceptibility as a function of temperature, meanwhile,
exhibits a pronounced peak at finite Nσ whose height diverges in the infinite volume limit as χmax

|P| ∼
N3

σ , reflecting the first order nature of the deconfinement phase transition in pure SU(3) gauge
theory.

At finite quark mass, the Polyakov loop is no longer a strict order parameter; the finite quark
mass breaks the Z3 symmetry explicitly, and 〈|P|〉 and 〈ReP〉 are never zero. Nevertheless at larger-
than-physical quark mass, some remnants of critical behavior seem to remain, and in particular,
past studies have found inflection points for 〈|P|〉 and the chiral condensate to appear at similar
temperatures. For example a 2008 study [1] using improved staggered fermions of N f = 2+ 1
flavors, with light quark masses corresponding to about a 50% larger-than-physical pion mass,
performed on coarse lattices with Nτ = 4 and 6, found inflection points in both 〈|P|〉 and the chiral
order parameter to lie around the same temperature.

While these earlier studies of Polyakov loop expectation values seemed to clearly indicate that
the inflection point of the Polyakov loop is related to the chiral transition, only the latter has a
clear-cut interpretation as a phase transition in the chiral limit. This “coincidence” of inflection
points in the temperature dependence of 〈|P|〉 and the chiral condensate is often taken as evidence
for the coincidence of a chiral and deconfinement transition. To what extent deconfinement or the
melting of bound states in general can be associated with properties of the Polyakov loop at finite
quark mass is, however, an open question. In fact, studies with improved fermion actions in general
showed that the QCD transition, which is a pseudo-critical crossover transition at non-zero values
of the quark masses, tends to become a smoother transition when going closer to the continuum
limit and using more highly improved fermion actions such as HISQ or stout actions [3]. Indeed a
potential hint that this behavior weakens was already given in Ref. [2], which we show in Figure 1,
where ones sees that χmax

|P| decreases with decreasing quark mass for fixed Nτ . Moreover there are
studies with more highly improved actions that do not find the inflection point of 〈|P|〉 to coincide
with the chiral inflection point [4, 5], challenging the notion of using the Polyakov loop as an
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Figure 1: Dependence of peak heights of Polyakov loop and chiral susceptibilities on Nτ = 4 lattices with
Nσ = 8, 12, and 16 as a function of the pseudo-scalar mass in units of the vector meson mass, which is another
way of stating quark mass. This calculation used a standard staggered fermion discretization scheme. Figure
taken from Ref. [2].

observable for deconfinement of light degrees of freedom. In actuality, then, it is not clear to what
extent properties of the Polyakov loop can provide a reasonable criterion for deconfinement.

Therefore one aim of the present study is to investigate whether an indication of deconfine-
ment from the Polyakov loop, if any, weakens as we lower the light quark mass ml . We employ
an improved staggered action (HISQ) that leads to greatly reduced taste violations, thus providing
a better approach to the continuum limit. We analyze the Polyakov loop and Polyakov loop cor-
relation functions on lattices with temporal extent Nτ = 8 and 12, which in other thermodynamics
calculations with HISQ have been shown to provide results close to the continuum limit [6].

2. Debye screening

The Polyakov loop relates to Fqq̄, the color-averaged free energy of a static quark-antiquark
pair in equilibrium at temperature T , by

exp [−Fqq̄(r,T )/T ] =
〈

P~x P†
~y

〉
r→∞∼ |〈P〉 |2 = 〈ReP〉2 , rT = |~x−~y|/aNτ , (2.1)

because the expectation value of the Polyakov loop lies in the real Z3 sector for finite quark masses.
The gauge-invariant color-averaged Polyakov loop correlator can be decomposed into (in general
gauge-dependent) color singlet and color octet contributions [7, 8, 9]. In particular the color singlet

F1(r,T ) =−T log
〈

1
3

trL~x L†
~y

〉
, (2.2)

which clearly depends on the gauge. Hence it is important to restrict to a particular gauge before
measuring F1. In the deconfined phase, the interaction between two charges is screened by the
medium. The distance at which in-medium modifications of the quark-antiquark interaction domi-
nate is characterized by the Debye screening radius rD. Its inverse, the Debye screening mass mD,
can be extracted from the long-distance (rT � 1) behavior of F1 as

F1(r,T )'−
4
3

α(T )
r

e−r mD(T )+F1(r = ∞,T ). (2.3)
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N3
σ ×Nτ ms/ml avg. # TU N3

σ ×Nτ ms/ml avg. # TU
323×8 27 62 000 603×12 40 30 000
403×8 40 52 000 80 17 000
563×8 80 20 000

160 17 000

Table 1: Summary of parameters used in these proceedings and corresponding statistics, reported in average
molecular dynamic time units (TU) per parameter combination.

The Debye mass is known to depend on N f at high temperatures through a leading order perturba-
tive calculation. At lower temperatures, lattice calculations still show qualitative agreement with
perturbation theory [10]. The Debye mass will also depend on ml; hence another goal of this study
will be to see how mD changes with ml .

3. Setup and simulation parameters

We use for our analysis configurations that were generated with the HISQ action in (2+ 1)-
flavor QCD with a physical value of the strange quark mass and light quark masses in the range
ml = ms/27 to ms/160, corresponding to 140 MeV & mπ & 58 MeV [11]. The bare coupling β is
taken in the range 6.260-6.850 depending on the lattice, which was chosen so that the temperatures
would lie in the vicinity of the chiral pseudo-critical temperature. Measurements of the free ener-
gies are made in the Coulomb gauge, with the gauge fixing carried out using the over-relaxation
algorithm [12]. The scale has been set using the experimental value fK = 156.1/

√
2 MeV [13] as

well as the updated results for the kaon decay constant calculated with the HISQ action, fK a(β ),
given in Ref. [14]. We renormalize the Polyakov loop using the qq-scheme [15], where the T = 0
potential is obtained from a fit of the combined data shown in Fig. 14 of Ref. [6] using the ansatz

VT=0(r) =
A
r
+B+Cr. (3.1)

Additive renormalization constants have been calculated at (r/a)2 = 4. Distances up to (r/a)2 = 13
have been tree-level corrected [16]. Error bars are calculated in 32 jackknife bins unless otherwise
stated. The lattice sizes, quark masses, and statistics are summarized in Table 1.

4. Results

The real part of the renormalized Polyakov loop is shown for different values of ms/ml in the
two plots in the top row of Figure 2 for Nτ = 8 (left) and Nτ = 12 (right) lattices. We plot this
instead of 〈|Pren|〉 because 〈|Pren|〉 receives significant finite volume corrections from ImP, and
because after explicit breaking of the Z3 symmetry by finite quark mass, the system settles in a
region where P is centered on the real axis. Vertical lines indicate the positions of chiral pseudo-
critical temperatures taken from Ref. [11], which are at roughly 151, 154, and 158 MeV for Nτ = 8,
and 149 and 156 MeV for Nτ = 12. In the entire temperature range probed by us 〈RePren〉 is convex
for both Nτ . Calculations performed with other lattice sizes similarly show no indication that a

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
4

Polyakov Loops in the Chiral Limit David A. Clarke

140 145 150 155 160 165
T [MeV]

0.04

0.06

0.08

0.10

0.12
〈R

eP
re

n
〉

ms/ml = 40
ms/ml = 80
ms/ml = 160

130 140 150 160
T [MeV]

0.04

0.06

0.08

0.10

0.12

〈R
eP

re
n
〉

ms/ml = 40
ms/ml = 80

140 145 150 155 160 165
T [MeV]

0.065

0.070

0.075

0.080

χ
ba

re
R

e
P

ms/ml = 40
ms/ml = 80
ms/ml = 160

130 140 150 160
T [MeV]

0.056

0.057

0.058

0.059

0.060

0.061

χ
ba

re
R

e
P

ms/ml = 40
ms/ml = 80

Figure 2: Real part of the renormalized Polyakov loop (top) and the susceptibility of the real part of the
bare Polyakov loop (bottom) near the chiral pseudo-critical temperature for Nτ = 8 (left) and Nτ = 12 (right)
for different ms/ml . The vertical lines indicate the chiral pseudo-critical temperatures corresponding to each
quark mass ratio.

crossover signal from the Polyakov loop coincides with the signal from the chiral condensate. An
inflection point, which needs to exist as 〈|Pren|〉 (or equivalently at Nσ = ∞, 〈ReP〉) will eventually
approach unity at high temperature, will therefore only occur at temperatures larger than 1.1Tpc.
For Nτ = 8, decreasing ml leads to an increase in 〈RePren〉 across all probed temperatures, with
no indication that the slope changes. Meanwhile for Nτ = 12 there is no ml dependence within the
statistics.

The two plots in the bottom row of Figure 2 show χbare
ReP, the susceptibility of the real part

of the bare Polyakov loop, for different ml for Nτ = 8 (left) and Nτ = 12 (right) for the same
configurations. We see no peak in this range, which is consistent with what we find for 〈RePren〉.
There is no sensitivity to ml for either Nτ in this range of temperatures. Our preliminary results thus
show no overlap of a signal from the Polyakov loop with the chiral condensate. Higher statistics
and more results at higher temperatures are needed to clearly see the effect of ml on χmax

ReP.
In Figure 3 we plot the renormalized singlet free energy against the Polyakov loop separation

r in physical units at Nτ = 8 for different ms/ml . The left plot shows results at β = 6.285, which
corresponds to a temperature of about 141 MeV, while the right plot has β = 6.445, which is at
about 166 MeV. The data are given at our largest available Nσ for each β and ml combination,
which we find are large enough to suppress finite volume effects. For both plots one can see by
eye that the long-distance results for all ml agree within statistical uncertainty. This suggests that

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
4

Polyakov Loops in the Chiral Limit David A. Clarke

0.2 0.4 0.6 0.8 1.0 1.2 1.4
r [fm]

−500

0

500

1000

1500

2000
F

re
n

[M
eV

]
ms/ml = 27
ms/ml = 40
ms/ml = 80
ms/ml = 160

0.2 0.4 0.6 0.8 1.0 1.2
r [fm]

−500

0

500

1000

1500

2000

F
re

n
[M

eV
]

ms/ml = 27
ms/ml = 40
ms/ml = 80
ms/ml = 160

Figure 3: Dependence of F1 on ml for Nτ = 8 and our largest Nσ for β = 6.285 or T = 141 [MeV] (left) and
β = 6.445 or T = 166 [MeV] (right). The purple line indicates the zero temperature potential.

the Debye screening masses, eventually extracted from these correlation functions, show little or
no dependence on the light quark masses.

Extraction of mD has not yet yielded any precise results, as F1 tends to be rather noisy away
from short distances, which has made carrying out a long-distance fit difficult. We plan to try
smoothing our configurations using the gradient flow [17], which mostly affects only short-distance
physics, and could therefore improve our long-distance signal without spoiling it.

5. Summary and Outlook

We presented here some first results for our research on indicators of hadron melting toward
the chiral limit. The Polyakov loop does not exhibit any indication of a crossover near the chiral
pseudo-critical temperature at lower-than-physical quark mass, consistent with the results of more
recent HISQ studies at physical ml . More results at other ml are forthcoming, which will allow
us to examine the behavior of χmax

ReP and the slope of 〈ReP〉 in the chiral limit. Further results
at other Nτ will also be analyzed, allowing for a continuum limit extrapolation. We are working
toward a determination of mD, however statistical noise in the free energy at large distances make
the calculation difficult. Our current data suggest mD will have no or little dependence on ml in the
range investigated. Smoothing using the gradient flow may be attempted in the future.
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