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We present a non-perturbative calculation of the form factors which contribute to the amplitudes
for the radiative decays P→ `ν̄`γ , where P is a pseudoscalar meson and ` is a charged lepton.
Together with the non-perturbative determination of the virtual photon corrections to the pro-
cesses P→ `ν̄`, this will allow accurate predictions to be made at O(αem) for leptonic decay
rates for pseudoscalar mesons ranging from the pion to the B meson. We are able to separate
unambiguously the point-like contribution, the square of which leads to the infrared divergence
in the decay rate, from the structure dependent, infrared-safe, terms in the amplitude. The fully
non-perturbative, O(a) improved calculation of the inclusive leptonic decay rates will lead to
significantly improved precision in the determination of the corresponding Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements. Precise predictions for the emission of a hard photon are also
very interesting, especially for the decays of heavy D and B mesons for which currently only
model-dependent predictions are available to compare with existing experimental data.

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

∗Speaker.
†guido.martinelli@roma1.infn.it

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
8

Real photon emissions in leptonic decays G. Martinelli

1. Introduction

The determination of the CKM matrix elements represents a crucial test of the limits of the Standard
Model (SM) in the quest for new physics. In this framework, precise experimental measurements
and accurate theoretical predictions of the leptonic decay rates of light and heavy pseudoscalar
mesons are particularly important. A first-principles calculation of these quantities requires the
non-perturbative determination of the physical amplitudes/rates that can only be obtained from
QCD simulations on the lattice. In order to fully exploit the available experimental information [1],
strong isospin-breaking effects and O(αem) electromagnetic corrections must be included. In par-
ticular, we must be able to compute the rates for radiative leptonic decays P→ `ν̄`γ , where P is a
charged pseudoscalar meson, γ a photon, ` a (anti-)lepton and ν̄` the corresponding anti-neutrino
(neutrino). This would also allow accurate, model-independent predictions of the important radia-
tive decays of heavy mesons with the emission of a hard photon. Results of a lattice calculation of
real-photon emission amplitudes have also been presented at this conference in ref. [2].

In the limit of soft-photon energies, the radiative decay rate can be reliably calculated perturbatively
by treating the meson as a point-like particle. This limit is however an idealisation and experimental
measurements are inclusive up to photon energies that might be too large to neglect structure-
dependent (SD) corrections to the point-like approximation. The region of hard photon energies,
which is particularly important for heavy mesons, represents a fundamental probe of the internal
structure of the mesons and can only be studied in lattice QCD simulations. On the other hand,
even in the case of light mesons, where chiral perturbation theory can be used, the low-energy
constants entering at O(p6) can only be estimated using model-dependent assumptions [3]-[7].

In ref. [8] a strategy to compute QED radiative corrections to the P → `ν̄`(γ) decay rates at
O(αem) on the lattice was proposed. The strategy was subsequently applied to provide the first
non-perturbative model-independent calculation of the decay rates π− → µ−ν̄µ(γ) and K− →
µ−ν̄µ(γ) [9]-[13]. The real soft-photon contributions was calculated in the point-like effective
theory and the SD corrections were estimated, by relying on the quoted chiral perturbation theory
results, to be negligible (see [8]). On the other hand SD corrections might be relevant for the decays
of pions and kaons into electrons when the energy of the photon becomes larger than about 20 MeV.
Moreover, in the single-pole dominance approximation proposed in ref. [14], the SD contribution
was estimated to be rather large in the case of heavy flavours. This contribution can be precisely
determined only in lattice QCD. Here we present a non-perturbative, O(a) improved lattice calcu-
lation of the form factors entering the radiative decay rate P→ `ν̄`γ in the case of pions, kaons, D
and Ds mesons. The case of bottom mesons will be studied in a future work on the subject.

2. Form factors contributing to the radiative decay amplitude

The non-perturbative hadronic amplitude for the process P→ `ν`γ is given by the T-product

Hαr
W (k, p) = ε

r
µ(k)Hαµ

W (k, p) = ε
r
µ(k)

∫
d4yeik·y 〈0|T{ jα

W (0) jµ
em(y)}|P(ppp)〉 , (2.1)
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where εr
µ(k) is the polarization vector of the photon with four-momentum k, jµ

em is the electro-
magnetic current, jα

W is the hadronic weak current, jα
W =V α−Aα = q̄1 (γ

α− γαγ5)q2, and ppp is the
momentum of the meson P with mass mP. To this amplitude, at O(αem), we have to add the diagram
in which the photon is emitted from the final-state charged lepton. The latter contribution can how-
ever, be computed in perturbation theory using the meson decay constant fP. The decomposition
of Hαr

W (k, p) in terms of form-factors has been discussed, for example, in refs. [8, 15]

Hαr
W (k, p) = ε

r
µ(k)

{
H1
[
k2gµα − kµkα

]
+H2

[
(p · k− k2)kµ − k2(p− k)µ

]
(p− k)α (2.2)

−i
FV

mP
ε

µαγβ kγ pβ +
FA

mP

[
(p · k− k2)gµα − (p− k)µkα

]
+ fP

[
gµα +

(2p− k)µ(p− k)α

2p · k− k2

]}
.

The last term in Eq. (2.2) corresponds to the point-like infrared-divergent contribution. This term
saturates the Ward Identity satisfied by Hαµ

W (k, p), i.e. kµ Hαµ

W (k, p) = i〈0| jα
W (0)|P(p)〉 = fP pα .

The four form-factors H1,2 and FV,A are scalar functions of Lorentz invariants, the squared meson
mass m2

P, p · k and k2. Eq. (2.2) is valid for generic (off-shell) values of the photon momentum
and for generic choices of the polarisation vectors. By setting the photon on-shell, i.e. by taking
k2 = 0, at fixed meson mass the form factors are functions of p ·k only. A convenient dimensionless
variable is given by xγ = 2p · k/m2

P. By choosing a physical basis for the polarization vectors such
that εr · k = 0 we have

Hαr
W (k, p) = ε

r
µ(k)

{
− i

FV (xγ)

mP
ε

µαγβ kγ pβ +

[
FA(xγ)

mP
+

fP

p · k

]
(p · k gµα − pµkα)+

fP

p · k
pµ pα

}
.

(2.3)
Once the decay constant fP and the two SD axial and vector form-factors FA and FV are known, the
decay rate can be calculated by using the formulae given in [15] and in appendix B of [8].

3. Extracting the form factors from Euclidean correlators

The Euclidean correlation function corresponding to Eq. (2.1) is given by

Cαr
W (t, ppp,kkk) =−iε

r
µ(kkk)

∫
d4y

∫
d3xxx 〈0|T{ jα

W (t,000) jµ
em(y)}P(0,xxx)|0〉eEγ ty−ikkk·yyy+ippp·xxx (3.1)

where k =(iEγ ,kkk), with Eγ = |kkk|, p=(iE, ppp) and
∫

d3xxxP(0,xxx)eippp·xxx is the source of the pseudoscalar
meson with momentum ppp. The convergence of the integral over ty is ensured by the safe analytic
continuation from Minkowski to Euclidean space, because of the absence of intermediate states
lighter than the pseudoscalar meson. The physical form factors can be extracted directly from the
Euclidean correlation functions

Rαr
W (t; ppp,kkk) =

2E
e−t(E−Eγ ) 〈P(ppp)|P|0〉

Cαr
W (t; ppp,kkk) = Hαr

W (k, p)+ · · · (3.2)

where 〈P(ppp)|P|0〉 is the matrix element of the operator P between the vacuum and the meson state
and the dots represent sub-leading exponentials. It is useful to note that, in order to separate the
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L

Figure 1: The connected diagram on the left shows our choice of the spatial boundary conditions. By treating the two
propagators attached to the electromagnetic current as two different flavours, with the same mass and electric charge but
different boundary conditions, we may choose arbitrary values for the meson and photon spatial momenta.The diagram
on the right represents the contribution associated with the emission of the photon by the sea-quarks. By neglecting this
diagram we have been working in the so-called electro-quenched approximation.

axial and vector form-factors it is enough to compute separately the ratios Rαr
V,A(t; ppp,kkk) correspond-

ing to the (renormalised) vector and axial component of the weak current, see eq. (3.4) below. For
jµ
em an exactly conserved lattice vector current is employed. The previous discussion assumed an

infinite time extent (T ) of the lattice. In our numerical calculations we have employed numerical
estimators for the ratios Rαr

V,A(t; ppp,kkk) built in terms of finite–T correlators that properly account for
the fact that the simulated quark and gauge fields satisfy respectively anti-periodic and periodic
boundary conditions in time.

Within the electro-quenched approximation, i.e. in the absence of the disconnected contribution
shown in the right-panel of Fig. 1, it is possible to choose arbitrary values of the spatial momenta
by using different spatial boundary conditions [16, 17] for the quark fields. More precisely, we set
the boundary conditions for the “spectactor” quark such that ψ(x+ k̂kkL) = exp(2πik̂kk · θθθ s/L)ψ(x).
Then we treat the two propagators that are connected with the electromagnetic current (the red
and blue lines) as the results of the Wick contractions of two different fields having the same
mass and electric charge but satisfying different boundary conditions. This is possible at the price
of accepting tiny violations of unitarity that are exponentially suppressed in the volume (similar
effects are induced in any case by the electro-quenched approximation). By setting the boundary
conditions as illustrated in the figure, we have thus been able to choose arbitrary values for the
meson and photon spatial momenta, ppp = 2π

L (θθθ 0−θθθ s) and kkk = 2π

L (θθθ 0−θθθ t) by tuning the real
three-vectors θθθ 0,t,s, where the subscript i = 0, t,s in the definition refers to the quark line emerging
from the source in the origin, 0; the quark annihilating in the sink given by the hadronic weak
current at time t and the spectator quark respectively. The numerical results have been obtained
by choosing all the non-zero components of the spatial momenta to be along the z-direction, i.e.
ppp = (0,0, |ppp|) and kkk = (0,0,Eγ). With this particular choice a convenient basis for the polarization
vectors of the photon is the one in which the two physical polarization vectors are given by ε

µ

1,2 =(
0,∓ 1√

2
,− 1√

2
,0
)

. In this basis we have εr · p = εr · k = 0 and consequently

H jr
A (k, p) =

ε
j

r mP

2
xγ

[
FA(xγ)+

2 fP

mPxγ

]
, H jr

V (k, p) =
i
(
Eγ εεεr ∧ ppp−E εεεr ∧ kkk

) j

mP
FV (xγ) . (3.3)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
1
9
8

Real photon emissions in leptonic decays G. Martinelli

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45 50
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 2: Examples of plateaux fits for the ratios RA(t,T/2) (left) and RV (t,T/2) (right).

For t� 0 we get the following numerical estimators for the form-factors

RA(t) =
mP

4p · k ∑
r=1,2

∑
j=1,2

R jr
A (t; ppp,kkk)

ε
j

r
→
[

FA(xγ)+
2 fP

mPxγ

]
,

RV (t) =
mP

4 ∑
r=1,2

∑
j=1,2

R jr
V (t; ppp,kkk)

i
(
Eγ εεεr ∧ ppp−E εεεr ∧ kkk

) j → FV (xγ) . (3.4)

At finite T , by using the formulae above which are valid for t > 0, we fit the ratios RA,V (t) by
searching a plateau in the region 0� t � T/2 . We also exploit time-reversal symmetries to
include the plateaus of RA,V (t) obtained at t > T/2. The values of the meson energies and of the
matrix element 〈P(ppp)|P|0〉 needed to build these estimators are obtained from standard effective-
mass/residue analyses of pseudoscalar-pseudoscalar two-point functions. The pseudoscalar-axial
two-point function is used to extract the decay constants fP in order to separate FA from the point-
like contribution 2 fP/(mPxγ).

4. Numerical results

All the results presented in this section are preliminary. We have used the gauge configurations
given in table II of ref. [13], produced with 2+ 1+ 1 twisted mass fermions at three different
values of the lattice spacing, a[fm] = 0.0885(36),0.00815(30),0.0619(18), with meson masses
in the range 250-1930 MeV. In total we have included 100 different combinations of momenta
obtained by assigning to each of the θi=0,t,s five different values; making the same assignements
for all choices of the quark masses. All the plots below correspond to the case of K and D(s)

mesons at unphysical values of the MS renormalised light-quark mass, mud(2 GeV) = 11.7 MeV,
and have been obtained from a simulation at a = 0.0619 fm. Thus the reference meson masses are

4
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Figure 3: The extracted value of RA(xγ ), Eq. (3.5), as a function of xγ for the K meson (left) and for the Ds meson
(right). The (red) squares represent the point-like contribution given by 2 fP/(mPxγ ).
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Figure 4: The extracted value of the kaon form factors FA(xγ ) (left) and FV (xγ ) (right) as a function of xγ . The (red)
lines correspond to the χPT predictions obtained by using the formulae discussed in the text.

MD = 1933(50) MeV, MK = 535(14) MeV and Mπ = 255(7) MeV. Similar plots can be shown
for other values of the simulated parameters. In Fig. 2 we show examples of plateaux for the ratios
RA,V (t) for the K and D mesons. This figure is representative of the signal quality, also for other
values of masses and momenta. In Fig. 3 we show the extracted value of RA(xγ), Eq. (3.4), for
the K meson and for the Ds meson. In both cases the point-like contribution, corresponding to the
term 2 fP/(mPxγ) dominates the form factor. From the measured decay constant and mass, we can
subtract the point-like term and extract FA(xγ). In the left-hand plot of Fig. 4 we show FA(xγ) as a
function of xγ and compare it to the lowest non-trivial order in chiral perturbation theory χPT , given
by FA(xγ) = const. = 8mK(Lr

9 +Lr
10)/ fK , indicated by a line with Lr

9 +Lr
10 ' 0.0017 [18]. On the

right hand plot of Fig. 4 we can compare the directly computed value of FV to its χPT prediction,
FV (xγ) = const. = mK/(4π2 fK). In a first exploratory study we covered the full physical range of
xγ in the kaon case (indeed we even have data for unphysical values corresponding to xγ > 1) and
for 0 ≤ xγ ≤ 0.4, corresponding to Eγ . 400 MeV, for the Ds meson. We are currently improving
our lattice data and, after a detailed analysis of all the systematics, we shall provide first-principles
phenomenologically relevant results for the form factors in the full kinematical range for both
light and heavy mesons. The form factors for heavy mesons will represent in this respect a totally
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unexplored field of investigation while, in the case of light mesons, our first-principle results will
make it possible to avoid χPT in phenomenological analyses.

In conclusion we have shown that, with moderate statistics, it is possible to extract with good
precision the form factors relevant for P→ `ν̄`γ decays for both light and heavy mesons and that
it is possible to study their momentum dependence. In the near future we will be able to compare
the precise theoretical predictions with experimental measurements.
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