Evading the model sign problem in the PNJL model with repulsive vector-type interaction via path optimization

Full text:
pdf

Pre-published on:
2020 January 04

Published on:
—

Abstract

We discuss the sign problem in the Polyakov loop extended Nambu--Jona-Lasinio model with repulsive vector-type interaction by using the path optimization method. In this model, both of the Polyakov loop and the vector-type interaction cause the model sign problem, and several prescriptions have been utilized even in the mean field treatment. In the path optimization method, integration variables are complexified and the integration path (manifold) is optimized to evade the sign problem, or equivalently to enhance the average phase factor. Within the homogeneous field ansatz, the path is optimized by using the feedforward neural network. We find that the assumptions adopted in previous works, $\mathrm{Re}\,A_8 \simeq 0$ and $\mathrm{Re}\,\omega \simeq 0$, can be justified from the Monte-Carlo configurations sampled on the optimized path. We also derive the Euler-Lagrange equation for the optimal path to satisfy. The two optimized paths, the solution of the Euler-Lagrange equation and the variationally optimized path, agree with each other in the region with large statistical weight.

Open Access

Copyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.