PoS - Proceedings of Science
Volume 363 - 37th International Symposium on Lattice Field Theory (LATTICE2019) - Main session
Quantum Critical Phenomena in an $O(4)$ Fermion Chain
H. Liu*, S. Chandrasekharan and R. Kaul
Full text: pdf
Pre-published on: January 04, 2020
Published on: August 27, 2020
Abstract
We construct a fermionic lattice model containing interacting spin-$\frac{1}{2}$ fermions with an $O(4)$ symmetry. In addition the model contains a $\mathbb{Z}_2$ chiral symmetry which prevents a fermion mass term. Our model is motivated by the ability to study its physics using the meron-cluster algorithm. By adding a strong repulsive Hubbard interaction $U$, we can transform it into the regular Heisenberg anti-ferromagnet. While we can study our model in any dimension, as a first project we study it in one spatial dimension. We discover that our model at $U=0$ can be described as a lattice-regularized 2-flavor Gross-Neveu model, where fermions become massive since the $\mathbb{Z}_2$ chiral symmetry of the model is spontaneously broken. We show numerically that the theory remains massive when $U$ is small. At large values of $U$ the model is equivalent to the isotropic spin-half anti-ferromagnetic chain, which is massless for topological reasons. This implies that our model has a quantum phase transition from a $\mathbb{Z}_2$ broken massive phase to a topologically massless phase as we increase $U$. We present results obtained from our quantum Monte Carlo method near this phase transition.
DOI: https://doi.org/10.22323/1.363.0222
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.