Main Image
Volume 363 - 37th International Symposium on Lattice Field Theory (LATTICE2019) - Main session
Simulating gauge theories on Lefschetz Thimbles
F.A. Ziesché,* J.M. Pawlowski, M. Scherzer, C. Schmidt, F. Ziegler
*corresponding author
Full text: pdf
Pre-published on: 2020 January 04
Published on:
Abstract
Lefschetz thimbles have been proposed recently as a possible solution to the complex action problem (sign problem) in Monte Carlo simulations. Here we discuss pure abelian gauge theory with a complex coupling $\beta$ and apply the concept of Generalized Lefschetz thimbles. We propose to simulate the theory on the union of the tangential manifolds to the thimbles.
We construct a local Metropolis-type algorithm, that is constrained to a specific tangential manifold. We also discuss how, starting from this result, successive subleading tangential manifolds can be taken into account via a reweighting approach. We demonstrate the algorithm on U(1) gauge theory in 1+1 dimensions and investigate the residual sign problem.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.