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1. Introduction

The anomalous magnetic moment of the muon aµ = (gµ −2)/2 is one of the most promising
quantities for the search of physics beyond the Standard Model of particle physics, since it can be
measured and calculated to a high precision. The current most precise experimental determination
of the anomalous magnetic moment of the muon has been obtained using polarised muons in a
storage ring at Brookhaven National Laboratory [1]

aexp
µ = 11659209.1(5.4)(3.3)×10−10 . (1.1)

Two upcoming experiments at Fermilab [2] and JPARC [3] plan to further reduce the uncertainty
of the experimental result by a factor of four.

When estimating the Standard Model prediction of aµ , contributions from the different funda-
mental interactions need to be calculated and a summary of the current most precise results is given
in table 1. The biggest contribution to aµ comes from the electromagnetic interaction (em) whereas
the error is dominated by the QCD contributions, namely the hadronic vacuum polarisation (HVP)
and the hadronic light-by-light scattering (HLBL). The corresponding diagrams for these processes
are shown in figure 1.

aµ ×1010 reference

em 11658471.895(8) [4]
weak 15.36(10) [5]

HVP 693.26(2.46) [6]1

HVP (NLO) −9.84(6) [9]
HVP (NNLO) 1.24(1) [10]
HLBL 10.5(2.6) [11]
total 11659182.4(1)(2.5)HVP(2.6)HLBL

Table 1: Standard Model Contributions to aµ

µ µ

µ µ

Figure 1: Hadronic contributions to aµ : The hadronic vacuum polarisation (left) and the hadronic light-by-
light scattering (right).

A comparison of the Standard Model prediction of aµ (cf. table 1) and the experimental de-
termination reveals a deviation of about 3.5σ , which could potentially hint to new physics. Further

1Other recent determinations of the HVP using R-ratio data can be found in [7, 8].
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investigation requires both, the experimental as well as the theoretical uncertainties to be reduced.
To match the targeted precision of the upcoming experiments (≈ 1.5×10−10), this requires know-
ledge of the HVP contribution at the level of 0.2% accuracy and the HLBL contribution at a level
of about 10%.

In recent years a lot of effort has been undertaken to calculate the hadronic contributions
to the anomalous magnetic moment of the muon from first principles using Lattice QCD. In the
remainder of this proceedings I will review the current status of such lattice calculations and discuss
the prospects and challenges to match the precision of the upcoming experiments.

2. Hadronic Vacuum Polarisation

Currently the most precise determinations of the HVP contribution to aµ are obtained by using
a dispersion relation and experimental data for the cross section σ(e+ e−→ hadrons) as an input

aHVP
µ =

(
αmµ

3π

)2
∞∫

m2
π

ds
R(s)K(s)

s2 with R(s) =
σ(e+ e−→ hadrons,s)
σ(e+ e−→ µ+µ−,s)

(2.1)

with an analytically known kernel function K(s). Recent determinations of aHVP
µ from this method

can be found in [6, 7, 8] and have a precision of about 0.5%. However, this approach relies on
experimental input and an ab initio calculation can be done using lattice QCD.

2.1 The HVP from the Lattice

In the following we will discuss how the HVP contribution to aµ can be calculated using lattice
QCD. The hadronic vacuum polarisation tensor

Πµν(Q)≡
∫

d4x eiQ·x 〈 jγ

µ(x) jγ

ν(0)
〉
= (QµQν −δµνQ2)Π(Q2) , (2.2)

is given by the four-dimensional Fourier transform of the correlation of two electromagnetic cur-
rents

jγ

µ =
2
3

uγµu− 1
3

dγµd− 1
3

sγµs+
2
3

cγµc , (2.3)

which receive contributions from the different quark flavours multiplied by the respective charge
factors. The contribution to the anomalous magnetic moment can then be determined from the
vacuum polarisation function Π(Q2) as [12]

aHVP
µ =

(
α

π

)2
∞∫

0

dQ2 K(Q2)Π̂(Q2) with Π̂(Q2) = 4π
2 [

Π(Q2)−Π(0)
]
. (2.4)

with an analytically known electromagnetic kernel function K(Q2). In the last few years it has
become common to calculate the subtracted vacuum polarisation Π̂(Q2) required in equation (2.4)
directly from the vector-vector two-point function C(t) projected to zero spatial momentum [13, 14]

Π̂(Q2) = 4π
2

∞∫
0

dt C(t)
[

cos(Qt)−1
Q2 +

1
2

t2
]

with C(t) =
1
3

2

∑
k=0

∑
~x

〈
jγ

k(~x, t) jγ

k(0)
〉
. (2.5)
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Changing the order of integration one can obtain aµ directly from C(t) by integrating over the
Euclidean time using the appropriate kernel function f (t)

aHVP
µ =

∞∫
0

dt f (t)C(t) . (2.6)

In isospin symmetric QCD2 the vector two-point function can be written in the following flavour
decomposition

C(t) =
5
9

C`(t)+
1
9

Cs(t)+
4
9

Cc(t)+Cdisc(t) , (2.7)

with connected contributions for the light quark C`, strange quark Cs and charm Cc quark as well as
a quark-disconnected contribution Cdisc. The diagrams corresponding to the quark-connected and
quark-disconnected Wick contractions are shown in figure 2.

Figure 2: Quark-connected (left) and quark-disconnected (right) Wick contraction for the HVP.

In the following, I will discuss the contributions to aHVP
µ flavour by flavour, starting with

the light-quark connected contribution in section 2.2, followed by the strange- and charm-quark
connected contributions in section 2.3, quark-disconnected contributions in section 2.4 and finally
isospin breaking corrections in section 2.5. A summary and comparison of the various available
results for aHVP

µ as well as an outlook for this quantity is given in section 2.6.

2.2 Light-Quark Contribution

In this section, I will show results for the light-quark connected contribution to aHVP
µ and

discuss some of the main challenges for achieving a sub-percent precision calculation, namely the
long distance noise-to-signal problem, finite volume corrections and accurate scale setting.

2.2.1 Long-Distance tail of the Vector Correlator

Figure 3 shows examples for the light-quark vector-vector two-point function C(t) from the
HPQCD/Fermilab/MILC [15] collaboration (left) and the integration kernel f (t) ·C(t) for aHVP

µ

from Mainz [16] (right). Both data sets have been obtained at physical pion mass.
As one can see in both plots, the signal in the vector two-point function deteriorates for large

Euclidean times t. The statistical error on the raw data can be improved by using noise reduction
techniques such as all-mode-averaging [17, 18] or low-mode-averaging, which has been success-
fully used in [19, 20]. However, the statistical uncertainty for aHVP

µ after integrating the raw data of
C(t) over t will still be dominated by the noise from large times. A possible approach to reduce this
uncertainty, is to replace the correlator by a (multi-) exponential fit for t > tc (see, e.g., [22, 15]). A
more systematic way to treat the long distance tail of the correlator is the bounding method [23, 19],
which will be discussed in the following.

2We will discuss isospin breaking corrections in section 2.5
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Figure 3: The vector correlator at physical pion mass: The plot on the left is from [15] and shows the two-
point function C(t) for two ensembles with the same parameters and different statistics. The plot on the right
is from [16] and shows the integration kernel f (t) ·C(t) for aHVP

µ with the light-quark contribution shown in
black.

2.2.2 Bounding Method

The vector correlator can be written using the spectral representation as the sum of exponen-
tials with positive prefactors

C(t) = ∑
n

A2
n

2En
e−Ent with A2

n > 0 . (2.8)

The idea of the bounding method is to bound the two-point function C(t) for Euclidean times larger
than some value tc from above and below [23, 19]

0 <C(tc)e−Etc (t−tc) ≤C(t)≤C(tc)e−E0(t−tc) for t ≥ tc . (2.9)

As a trivial lower bound one can use zero, since the correlator (cf. equation (2.8)) is strictly positive.
A more stringent lower bound for t ≥ tc can be obtained by using the effective mass Etc at the given
tc. Since energy states with higher energies decay faster, the true correlator C(t) is guaranteed to
fall slower than C(tc)e−Etc (t−tc) for t ≥ tc. On the other hand, the true correlator is guaranteed to
decay faster than the actual ground state energy E0, and thus C(t) ≤ C(tc)e−E0(t−tc) is an upper
bound for the correlator. In the vector channel, the ground state energy E0 is given by the finite
volume energy of two pions with one unit of momentum. When calculating aHVP

µ one now replaces
the correlator for t ≥ tc by the upper and the lower bound and varies tc. An example of aHVP

µ plotted
against tc is shown on the left-hand side of figure 4. As one can see, once tc is large enough, the
result using the upper and lower bound overlap, and aHVP

µ can be extracted from this region.
The bounding method can be further improved [16, 24] if a dedicated spectroscopy study for

the vector channel is available. This requires to calculate two-point functions using various opera-
tors that have overlap with two-pion states. With the Generalised Eigenvalue Problem (GEVP) [25],
one can extract the energies En and overlap factors An for the lowest N states of the spectrum. Once
these energies and overlap factors have been determined, the long-distance tail of the vector corre-
lator can be reconstructed. An example at physical pion mass is shown in figure 5. As one can see,
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Figure 4: aHVP
µ from the bounding method (left) and the improved bounding method (right) plotted against

tc. The plots are taken from [16] and use a pion mass of Mπ ≈ 200 MeV.

the more states are used in the reconstruction, the closer the reconstructed data are to the original
correlator (shown in black in figure 5).

Figure 5: The integration kernel f (t) ·C(t) for aHVP
µ plotted against t. The black data show the original

correlator, the coloured points are reconstructions of the vector two-point function using one (blue) and up
to four (red) states from the GEVP. The figure is taken from [24].

These reconstructed states can now be used to improve the bounding method as follows. Sub-
tract the lowest N states from the correlation function and bound the subtracted correlator C̃(t)

C̃(t) =C(t)−
N−1

∑
n=0

A2
n

2En
e−Ent 0≤ C̃(tc)e−Etc (t−tc) ≤ C̃(t)≤ C̃(tc)e−EN(t−tc) . (2.10)

Here, the upper bound is obtained using the energy of the (N + 1)th state, i.e. the lightest state
that was not subtracted from the correlator. The right-hand side of figure 4 shows the improved
bounding method from [16] with the two lightest states subtracted. As one can see in comparison
with the unimproved bounding method (left on figure 4) the upper and the lower bound now overlap
at much smaller tc and aHVP

µ can be extracted with a smaller error.

5
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2.2.3 Finite Volume Effects

Finite volume (FV) effects in the vector correlator are dominated by the two-pion state and
can thus be expected to be important for large time separations t. Various studies (see, e.g. [26,
20, 16, 27]) of FV effects for lattice calculations of aHVP

µ suggest that these are of the order of
∆FVaHVP

µ ≈ 20−30×10−10 for typical sizes of 5−6 fm of state-of-the-art lattice ensembles used
at the physical point. Thus, it is crucial to carefully study and correct for FV effects when aiming
at percent level precision for the HVP.

A straightforward way to study finite volume effects is using ensembles that differ only in the
volume. Figure 6 shows results from the PACS collaboration [26] for the aHVP

µ integrand calculated
using two different volumes of 5.4 fm and 10.8 fm at the physical pion mass. One can clearly see,
a significant difference between the data on both ensembles, in particular for larger values of t. The
authors of [26] found finite volume effects for aHVP

µ to be about 1.7 times larger than what was
expected from next-to-leading order (NLO) Chiral Perturbation Theory (χPT).

Figure 6: The aHVP
µ integrand calculated using two different volumes of 5.4 fm (green triangles) and 10.8 fm

(blue circles) at physical pion mass. The plot on the right shows a zoomed-in version of the data on the left.
The plot is taken from [26].

Finite volume corrections to aHVP
µ have been determined at next-to-next-to-leading order

(NNLO) in χPT recently [28, 20] and the authors of [20] find that additional FV effects from
NNLO are about 0.4−0.45 times the NLO FV corrections.

A systematic way to study and correct for FV effects for the HVP is by writing the long dis-
tance contribution of the vector two-point function in terms of the timelike pion form factor. In
[29, 30] it was suggested to use the Gounaris-Sakurai parameterization of the timelike pion form
factor to calculate the infinite volume long-distance vector two-point function and the finite volume
equivalent using the Gounaris-Sakurai parameterization combined with the Lellouch-Lüscher for-
malism [31, 32]. This approach has been used by Mainz [16], ETMC [33] and RBC/UKQCD [27]
to study FV volume corrections and results after correcting for FV effects are found to be consistent
when comparing ensembles that only differ by volume [16, 33]. The plot on the left-hand side of
figure 7 is from Mainz [16] and shows the aHVP

µ integrand for two different ensembles at the same
pion mass Mπ = 280 MeV with different volumes. The smaller volume is shown without (black

6
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circles) and with (blue squares) FV correction using the timelike pion form factor. After the data
on the smaller ensemble has been corrected the results for the two different volumes agree with
each other. The plot on the right-hand side of figure 7 is from ETMC [33] and shows aHVP

µ plotted
against the pion mass for various ensembles without (open symbols) and with (closed symbols) FV
corrections. In addition to using the timelike pion form factor to estimate FV effects for large times
t, the authors of [33] use perturbative QCD for small t to correct for FV effects. At a pion mass of
around Mπ = 320 MeV, where several ensembles are available that only differ in volume, results
are found to be in agreement once FV effects have been corrected for.

Figure 7: Correcting finite volume effects with the timelike pion form factor. The plot on the left is taken
from [16] and shows the aHVP

µ integrand for two different ensembles at the same pion mass Mπ = 280 MeV
with different volumes. The smaller volume is shown without (black circles) and with FV correction (blue
squares). The plot on the right is taken from [33] and shows aHVP

µ vs the pion mass for various ensembles
without (open symbols) and with (closed symbols) FV corrections.

In a recent paper [35], FV corrections to the HVP have been studied using a Hamiltonian
approach, currently quoting corrections at O(e−mπ L), but neglecting effects of O(e−

√
2mπ L) and

higher orders.

2.2.4 Scale Setting

Although aµ is a dimensionless quantity, it depends on the scale of a given lattice, since the
evaluation of the Kernel function for integrating the HVP requires to input the muon mass in lattice
units. Assuming the scale has been set by some quantity Λ with statistical error ∆Λ, using error
propagation one can show [22], that the relative error on Λ is going to be enhanced by a factor of
≈ 1.8 for aHVP

µ

∆aHVP
µ =

∣∣∣∣∣Λ daHVP
µ

dΛ

∣∣∣∣∣ · ∆Λ

Λ
=

∣∣∣∣∣Mµ

daHVP
µ

dMµ

∣∣∣∣∣ · ∆Λ

Λ
with Mµ =

mµ

Λ
. (2.11)

Thus, achieving 0.2% accuracy on the HVP requires knowledge of the lattice scale to at least
0.1%. A suitable quantity for high-precision scale setting might be the mass of the Ω-Baryon.
However, whether or not scale setting at 0.1% accuracy is possible in the near future remains to be
investigated.

7
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2.2.5 Comparison of Results for the Light-Quark Contribution

Figure 8 shows a comparison of results for the light-quark connected contribution to the HVP
from various collaborations. The two different panels N f = 2+ 1 and N f = 2+ 1+ 1 denote the
number of dynamical fermions used in the calculations.

600 620 640 660 680 700

a
hvp

µ · 1010

CLS Mainz 2019

PACS-CS 2019

RBC/UKQCD 2018

BMW 2018

ETMC 2017

HPQCD/Fermilab/MILC 2019

Aubin et al 2019

Nf = 2 + 1

Nf = 2 + 1 + 1

Figure 8: Comparison of lattice results for the light-quark contribution to aHVP
µ . The values are taken from

CLS Mainz 2019 [16], PACS-CS 2019 [26], RBC/UKQCD 2018 [19], BMW 2018 [36], ETMC 2018 [33],
HPQCD/Fermilab/MILC 2019 [15], Aubin et al 2019 [20].

The relative errors on the light-quark contributions of the different results are about 1.3%
to 3.3%. For most of the collaborations, the error is dominated by statistics (inner error bar on
the points in figure 8). As discussed above, the main challenge in terms of statistical error is the
growing noise-to-signal ratio for large Euclidean time separations. Thus, a reduction of this error
requires good control of the long-distance tail. A very promising approach for reaching sub-percent
precision on the light quark contribution in the future is the improved bounding method discussed
above.

As one can see, there is a slight tension between the smallest and the largest results of about
2σ . This tension has to be object of further investigations, and in particular needs to be monitored
when the collaborations further reduce the uncertainties in the individual calculations. A possible
approach for determining the source of potential differences between different groups would be
the comparison of more intermediate results, e.g. time-moments [37] of the vector correlator or aµ

calculated from a time window [19].

2.3 Strange- and Charm-Quark Contribution

The connected strange- and charm-quark contributions to the HVP are significantly smaller
than the light-quark contribution and suffer far less from noise-to-signal problems in the long-
distance tail or finite volume corrections. For the charm-quark contribution discretization effects
can be large and lattice calculations should ideally include at least three different lattice spacings
to reliably extrapolate to the continuum.

The results for the connected strange- and charm-quark contribution to aHVP
µ from various col-

laborations are shown in figure 9 and are in good agreement with each other. The errors correspond
to errors of about . 0.4% and . 0.3% on the total HVP for the strange and charm, respectively.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
2
4

Recent Developments of Muon g-2 from Lattice QCD Vera Gülpers

Thus, these contributions are already in a good shape when aiming at sub-percent precision for
aHVP

µ from a lattice calculation.

48 52 56 60

ahvpµ,s · 1010

CLS Mainz 2019

PACS-CS 2019

RBC/UKQCD 2018

BMW 2018

ETMC 2017

HPQCD 2014

Nf = 2 + 1

Nf = 2 + 1 + 1

10 12 14 16

ahvpµ,c · 1010

CLS Mainz 2019

PACS-CS 2019

RBC/UKQCD 2018

BMW 2018

ETMC 2017

HPQCD 2014

Nf = 2 + 1

Nf = 2 + 1 + 1

Figure 9: Comparison of lattice results for the strange-quark (left) and charm-quark (right) contributions to
aHVP

µ . Results are taken from CLS Mainz 2019 [16], PACS-CS 2019 [26], RBC/UKQCD 2018 [19], BMW
2018 [36], ETMC 2017 [38], HPQCD/Fermilab/MILC 2014 [37].

2.4 Quark-Disconnected Contribution

Besides the quark-connected contributions discussed above, the HVP receives a contribution
from a quark-disconnected Wick contraction (cf. right-hand side of figure 2). The calculation
of the respective disconnected quark-loops requires knowledge of the propagator from all lattice
points to all other lattice points (all-to-all propagator), which has to be determined stochastically
and is thus notoriously noisy. The combined light- and strange-quark disconnected contribution is
SU(3)-flavour suppressed, i.e. it would vanish if ms = m`. In [39] it was shown that a substantial
reduction in the statistical error can be achieved by exactly implementing SU(3) suppression in the
lattice calculation

Cdisc(t) =
1
9

〈
(∆`(t)−∆

s(t)) · (∆`(0)−∆
s(0))

〉
with ∆

f
µ(t) = ∑

~x
Tr
[
γµS f (x,x)

]
(2.12)

and stochastically estimate the difference ∆`(t)−∆s(t) rather than the individual quark loops. Var-
ious stochastic estimators for ∆`(t)−∆s(t) and further noise reduction techniques have been pro-
posed, e.g. low-mode-averaging and sparsened noise sources [40], hierarchical probing [41, 16] or
frequency-splitting estimators [42, 43].

−30 −25 −20 −15 −10 −5 0

ahvp

µ,dis · 1010

CLS Mainz 2019

RBC/UKQCD 2018

BMW 2018

Nf = 2 + 1

Nf = 2 + 1 + 1

Figure 10: Comparison of lattice results for the quark-disconnected contribution to aHVP
µ . Values are taken

from CLS Mainz 2019 [16], RBC/UKQCD 2018 [19], BMW 2018 [36].

Figure 10 shows the published results for the quark-disconnected contribution to aHVP
µ . The

results are in reasonable agreement, although the results from Mainz is about 2σ below the two

9



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
2
4

Recent Developments of Muon g-2 from Lattice QCD Vera Gülpers

other values. Whether this is due to the chiral extrapolation done in [16] needs to be investigated
by adding data closer or at the physical point in this calculation.

The errors on the available published results for the quark-disconnected contribution corre-
spond to errors of about 0.3−0.7% on the total HVP and thus, are already precise enough for a 1%
determination of aHVP

µ , however, still need to be improved if an error of < 0.2% is targeted.
Work in progress on calculating the quark-disconnected contribution to the hadronic vacuum

polarisation by the HPQCD/Fermilab/MILC collaboration was presented at this conference [44].

2.5 Isospin Breaking Corrections

All lattice calculations discussed above have been done in the isospin symmetric limit, where
the up- and the down-quark are treated as being equal. However, in nature, isospin is broken
by the different electromagnetic charges of the up- and the down-quark as well as their different
bare quark masses. These effects are expected to be of the order of O(α) ≈ 1% and O((md −
mu)/ΛQCD) ≈ 1%, respectively. Clearly, a lattice calculation aiming at such precision will need
to include these effects. It is important to stress that the separation of strong isospin breaking and
QED effects require to define a renormalisation prescription. At the same time the definition of the
“physical” point in a pure QCD simulation becomes scheme dependent. Only in full QCD+QED
with mu 6= md the physical point is unambiguously defined, e.g. by matching a set of hadron masses
to their experimental value (see e.g. [46]).

2.5.1 Strong Isospin Breaking Correction

The effect from strong isospin breaking can be taken into account in a lattice calculation by
simply using different input quark masses for the up and the down quark. This has been done
for calculating the strong isospin breaking correction to the HVP by the HPQCD/Fermilab/MILC
collaboration [47]. Here, two different gauge ensembles where used, one with N f = 2+1+1 and
mu 6= md only in the valance sector and one with N f = 1+ 1+ 1+ 1 taking also strong isospin
breaking corrections for the sea quarks into account. The strong isospin breaking correction is then
quoted as the difference between calculating aHVP

µ using the average up- and down-quark mass for
the light quarks and using the up-quark mass for the up and the down-quark mass for the down
quark. In [47] the authors find δ sIBaHVP

µ = (7.7±3.7)×10−10 and δ sIBaHVP
µ = (9.0±2.3)×10−10

using the ensemble without and with mu 6= md for the sea quarks, respectively.
A different approach for including strong isospin breaking corrections in a lattice calculation

is by expanding [48] the path integral in the difference of the respective quark masses and their
isospin symmetric mass m̂

〈O〉m f 6=m̂ f
= 〈O〉m f =m̂ +∆m f

∂

∂m f
〈O〉
∣∣∣∣
m f =m̂

+O
(
∆m2

f
)

(2.13)

with ∆m f = m f − m̂. At O(∆m f ) one has to calculate contributions with one insertion of a scalar
current. The corresponding diagrams for the hadronic vacuum polarisation are shown in figure 11.
Diagram M and O are the correction for the valance quarks for the quark-connected and quark-
disconnected HVP, respectively, whereas diagrams R and Rd correspond to sea-quark effects.

10
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(a) M (b) O (c) R (d) Rd

Figure 11: Mass insertion diagrams for the hadronic vacuum polarisation. The insertion of a scalar current
is denoted by the diamond-shaped vertex.

The expansion of the path integral was used in [49, 19] to calculate the valance effect for the
quark-connected HVP (diagram M). The ETMC collaboration finds δ sIBaHVP

µ =(6.0±2.3)×10−10

[49] and RBC/UKQCD obtains δ sIBaHVP
µ = (10.6±4.3±6.6)×10−10 [19].

2.5.2 QED Correction

The determination of electromagnetic corrections requires the inclusion of QED when evalu-
ating the Euclidean path integral. Since QED is a long range interaction, finite volume (FV) effects
for lattice calculations can be large. Compared to pure QCD, where FV corrections are exponen-
tially suppressed, in the case of QED finite volume corrections are usually power-law3. For QEDL

[50], which is a commonly used prescription of QED in a finite volume, all the spatial zero modes
of the photon field are subtracted and finite volume effects for the QED corrections to the HVP are
of O(1/(mπL)3) [52, 53, 38], and thus negligible within the required precision for the HVP when
using typical lattice sizes with mπL & 4.

Since the electromagnetic fine structure constant α is small at low energies, QED can be
treated in a perturbative way by expanding the QCD+QED path integral in e2 [54]

〈O〉QCD+QED = 〈O〉QCD +
1
2

e2 ∂ 2

∂e2 〈O〉
∣∣∣∣
e=0

+O(α2) . (2.14)

At O(α) this requires to calculate diagrams that include one photon propagator. The respective
diagrams for the HVP are shown in figure 12. Diagrams S and V are QED corrections to the quark-
connected HVP and diagrams F and D3 are QED corrections to the quark-disconnected HVP. All
other diagrams correspond to QED effects for the sea quarks.

The ETMC [49] and RBC/UKQCD collaborations [19, 55] both have calculated QED cor-
rections to the quark-connected HVP in the electro-quenched approximation, where QED cor-
rections for the sea-quarks are not taken into account. Calculating QED corrections at various
masses heavier than physical pion mass and extrapolating to the physical point, ETMC finds
δ QEDaHVP

µ = 1.1(1.0)×10−10 [49]. RBC/UKQCD finds δ QEDaHVP
µ = 5.9(5.7)×10−10 [19], con-

sistent with ETMC albeit with larger error bars, working directly at physical masses at a single
lattice spacing. Further work in progress for QED corrections to the HVP by other collaborations
was presented at this conference [56, 57].

The leading QED correction to the quark-disconnected HVP is given by the diagram F shown
in figure 12. Other than the same diagram without the photon connecting the two quark loops
(i.e. the pure QCD quark-disconnected diagram), this contribution is not SU(3)-flavour suppressed

3A prescription for infinite volume QED without power-law finite volume corrections has been recently proposed
in [51].
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(a) V (b) S (c) T (d) Td

(e) F (f) D3 (g) D1 (h) D1d (i) D2 (j) D2d

Figure 12: QED correction diagrams for the hadronic vacuum polarisation.

and could thus be important. When calculating this contribution, one is only interested in the
case where, besides the photon line, the quark-loops are in addition connected by gluons. If
no additional gluons connect the quarks, these contributions are conventionally included in the
NLO HVP contribution4 to aµ (cf. table 1) and thus, need to be subtracted in a lattice calcula-
tion to avoid double counting. RBC/UKQCD calculated this diagram and finds δ QED, discaHVP

µ =

−6.9(2.1)(1.4)×10−10 [19].
The diagrams in figure 12 corresponding to sea-quark effects are all at least either SU(3)-

flavour or 1/Nc suppressed. However, naively, they could still be of the order of ≈ 33% of the
connected contribution. Thus, when aiming at sub-percent precision for the total HVP contribution
to aµ , these effects will have to be included eventually.

2.6 Summary - HVP Contribution to aµ

Figure 13 shows a comparison of results for the total HVP contribution to aµ . The upper panel
shows determinations using the R-ratio data. The coloured points in the panel labeled “lattice”
shows the published lattice results from various collaboration. The lowest point in the plot (“no
new physics”) denotes the result when subtracting all other Standard Model contributions (as in
table 1) from the experimental result, i.e. the value that aHVP

µ would have to take for the Standard
Model prediction to be in agreement with experiment. Clearly, at the current state-of-the-art, lattice
calculations are not yet precise enough to distinguish between the R-ratio results and the “no new
physics” scenario.

Furthermore, one can see that the smallest and largest lattice results disagree at a level of about
2σ . Slight tensions between lattice results will have to be subject to further investigation in the fu-
ture, in particular once the collaborations reduce the errors, to make sure to achieve consensus
between the various lattice results. A possible approach is the comparison of more intermediate
quantities, e.g. time-moments [37] of the vector correlator or aHVP

µ calculated from a time win-
dow [19].

Finally, the point in the second panel in figure 13 shows a result from RBC/UKQCD [19] com-
bining lattice and R-ratio results using a window method, where the vector correlator from small
and large distances is taken from the R-ratio and intermediate distances from a lattice calculation.

4See [58] for a lattice calculation of the NLO HVP contribution to aµ
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The point shown here uses the R-ratio data compilation from “Jegerlehner 2017” [59] and clearly
shows that it is possible to improve the R-ratio results by supplementing it with data from a lattice
calculation.

650 700 750

a
hvp

µ · 1010

Jegerlehner 2017

Davier et al 2019

Teubner et al 2018R-ratio

R-ratio & lattice

lattice

RBC/UKQCD 2018

RBC/UKQCD 2018

BMW 2017

FermiLab/HPQCD/MILC 2019

ETMC 2019

CLS Mainz 2019

PACS 2019

“no new physics”

1

Figure 13: Comparison of various determinations of the HVP contribution to the anomalous magnetic
moment of the muon.

The relative contribution of the various quark-flavours to the total HVP contribution from
lattice calculations is shown by the pie chart on the left-hand side of figure 14. Clearly, the by far
biggest contribution comes for the light-quark connected diagram, followed by the strange-quark
contribution.

light

649

strange

53

14.5
15
8

light

strange
charm
disconnected

Isospin Breaking

1

15.6

1.1999
0.6

3.6

7

light

strange

charm
disconnected

Isospin

Breaking

1
aHVP

µ δaHVP
µ

Figure 14: The relative size of the various flavour contributions to the HVP is shown on the left. The
plot on the right shows the relative size of the average (statistical + systematic) error on the various flavour
contributions from the available lattice results.

The total errors on the lattice results for the HVP shown in figure 13 are all of the order
of 2− 3%. This is clearly not yet competitive with the R-ratio results, which would require an
accuracy of . 1%, or even the required 0.2% to match the precision of the upcoming experiments.
The relative contribution to the error on the average lattice calculation is shown in the pie chart
on the right-hand side of figure 14. The error on the lattice results is dominated by the error on
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the light-quark contribution. The main challenges for reaching sub-percent precision for the light-
quark contributions, that were discussed in previous sections, are controlling the statistical noise
in the long-distance tail, having careful and reliable estimates of finite volume effects as well as a
precise scale setting.

The second biggest contribution to the error on the average lattice calculation (cf. right-hand
side of figure 14) comes from isospin breaking corrections (or the systematic error made by not
including those effects). Given that the first calculations of isospin breaking corrections have only
recently become available, progress and further reduction of statistical error is to be expected in the
near future. However, it is also important to study the effects of including QED for the sea quarks,
since these contributions could potentially be important at the level of sub-percent precision for the
hadronic vacuum polarisation.

For the future, the first goal is to obtain calculations of aHVP
µ from lattice calculations at a

precision of . 1%, at which the lattice becomes competitive to R-ratio determinations. Given the
recent progress presented at this conference, first results at 1% precision could be available within
the time frame of a year.

Besides the anomalous magnetic moment of the muon, the hadronic vacuum polarisation also
enters in other quantities, like the running of the electromagnetic coupling and the running of
the electroweak mixing angle. Progress in this direction was presented by Mainz at this confer-
ence [60].

3. Hadronic Light-by-Light Scattering

The hadronic light-by-light scattering contribution (cf. diagram on the right-hand side of
figure 1) enters the anomalous magnetic moment at order α3. The value that is often used for
the Standard Model prediction is the so-called “Glasgow-consensus” [11], which includes model-
dependent estimates of various contributions to the light-by-light scattering, with the largest contri-
bution coming from the π0-pole. Recent work in progress on dispersion relations for the hadronic
light-by-light scattering can be found, e.g., in [61, 62, 63] and references therein.

In the following, I will discuss the progress of ab initio calculations of the hadronic light-by-
light scattering using lattice QCD.

3.1 Light-by-Light from the Lattice

The hadronic part of the light-by-light scattering amplitude is written in terms of the expecta-
tion value of four electromagnetic currents

Πµνλρ(q1,q2,q3) =
∫

d4x1d4x2d4x3 e−i(q1x1+q2x2+q3x3)
〈

jγ

µ(x1) jγ

ν(x2) jγ

λ
(x3) jγ

ρ(0)
〉
. (3.1)

The fully quark-connected as well as the leading quark-disconnected Wick contraction are shown
in figure 15. All other possible quark-disconnected contractions are SU(3)-flavour suppressed.

Currently, two collaborations – Mainz and RBC/UKQCD – are actively working on calculating
the hadronic light-by-light scattering contribution aHLBL

µ to the anomalous magnetic moment of the
muon from the lattice. Both collaborations use position space approaches and their methods and
status are described in sections 3.2 and 3.3, respectively.
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µ µ µ µ

Figure 15: Fully quark-connected (left) and leading quark-disconnected (right) contributions to the hadronic
light-by-light scattering.

3.2 Mainz Status

In the position-space method developed by Mainz [64, 65] the hadronic light-by-light scatter-
ing contribution to aµ is written as

aHLBL
µ =

mµe6

3

∫
dx4dy4 L [ρ,σ ];µνλ (x,y) iΠ̂ρ;µνλσ (x,y) . (3.2)

The hadronic part is given by the four-point function

Π̂ρ;µνλσ =
∫

dz4 izρ

〈
jγ

µ(x) jγ

ν(y) jγ

λ
(0) jγ

σ (z)
〉

(3.3)

where z is the position of the vertex with the external photon, and x, y and 0 the positions of the
quark-photon vertices with the internal photon lines. The QED part of the light-by-light diagram is
given by an electromagnetic kernel function L [ρ,σ ];µνλ (x,y), that can be computed directly in the
continuum and infinite volume limit.

Figure 16: The quark-connected contribution to aHLBL
µ for different pion masses. The data has been inte-

grated up to |y|max. Plot is taken from [66].

The current status of calculating aHLBL
µ using this method was presented at this conference

[66] and some results for the fully quark-connected contribution are shown in figure 16. The plot
in figure 16 shows aHLBL

µ for three different pion masses at fixed lattice spacing. The data has been
partially integrated up to |y|max, such that aHLBL

µ can be extracted from a plateau at large enough
values of |y|max.

3.3 RBC/UKQCD Status

In the position space approach proposed by RBC/UKQCD [67] the full hadronic light-by-light
scattering diagram including the muon and photon propagators is treated on the lattice. To make
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this calculation feasible, position space sampling is used, where the sum over the position of two
of the quark-photon vertices is sampled stochastically. For the photon propagators RBC/UKQCD
uses either the QEDL [50] prescription leading to power-law finite volume corrections or the infinite
volume formulation (QED∞) of the photon propagator as proposed in [68].

Figure 17 shows results from the recent paper [69] using QEDL for the photon propagator.
aHLBL

µ obtained on various different gauge ensembles is plotted against 1/(mµL)2 with the box size
L for the fully quark-connected diagram (left) and the leading quark-disconnected diagram (right).
The lines in the plots show the infinite volume and continuum extrapolation with the purple point
at 1/(mµL)2 = 0 showing the result extrapolated to the infinite volume and continuum limit.

Figure 17: Infinite volume and continuum extrapolation of aHLBL
µ using QEDL for the photons for the

fully connected diagram (left) and the leading disconnected diagram (right). In both plots the purple point at
1/(mµ L)2 = 0 shows the result extrapolated to infinite volume and continuum. The plots are taken from [69].

The quark-connected and leading quark-disconnected contribution are found to have opposite
signs, and the result for the sum of both contribution is [69]

aHLBL
µ = 7.20(3.98)(1.65)×10−10 . (3.4)

extrapolated to the physical point. The result (3.4) is consistent with the model estimates used in
the Glasgow Concensus (cf. table 1), albeit with larger uncertainties.

In addition RBC/UKQCD presented progress [70, 71] on calculating aHLBL
µ using QED∞ at

this conference. The long-distance tail of the hadronic light-by-light scattering is dominated by the
π0-pole contribution (cf. diagram in figure 18). This can be used to further improve the calculation
of aHLBL

µ by supplementing the long distance by the pion-pole contribution calculated either from
a model or directly from the lattice using the pion transition form factor π0 → γγ and work in
progress in that direction was presented [70, 71].

π0

µ µ

Figure 18: π0 pole contribution to the hadronic light-by-light scattering
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3.4 Summary

Currently two collaborations are actively working on determining the hadronic light-by-light
scattering contribution to aµ from first principles using lattice calculations. RBC/UKQCD has
recently published [69] the first result extrapolated to the continuum and infinite volume limit and
Mainz has presented [66] promising work in progress using their position space approach [64, 65].

For the hadronic light-by-light scattering contribution to explain the discrepancy between ex-
perimental measurement and Standard Model prediction of aµ , one would need a value which is
about three times larger than the number quoted in the Glasgow consensus. However, current lattice
calculations suggest, that this is very unlikely.

To match the precision of the upcoming experimental results for g− 2, the hadronic light-
by-light scattering amplitude needs to be determined to a precision of about 10%. A promising
proposal to reduce the statistical noise from the long-distance contribution is to constrain lattice
data at long distances by the pion-pole contribution. A lattice calculation of the pion-pole contri-
bution requires the pion transition form factor π0→ γγ (see [72, 73] for recent calculations from
the Mainz collaboration).

4. Final Remarks

The persistent discrepancy between the Standard Model prediction (table 1) and the experi-
mental result (equation (1.1)) for the anomalous magnetic moment of the muon has triggered a
tremendous effort within the lattice community to calculate the hadronic contributions to aµ from
first principles. The upcoming experiments at Fermilab [2] and JPARC [3] aim to further reduce the
uncertainty of the experimental result by a factor of 4. To match the precision of these upcoming
experiments one finally has to determine the hadronic vacuum polarisation contribution aHVP

µ to a
precision of about 0.2% and the hadronic light-by-light scattering aHLBL

µ to about 10% accuracy.
In terms of the hadronic vacuum polarisation, which is the leading hadronic contribution to

aµ , several results from different collaborations with a precision of 2−3% are available and sum-
marised in figure 13. Recent progress presented at this conference suggests, that the first results at
around 1% precision could be available within the time frame of a year.
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