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Zero modes of the domain wall operator for 2+1
flavor lattices with a−1 ≈ 1 GeV
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The measurement of the topological properties on the lattices usually requires smearing. In this
proceeding, we demonstrate that we can use the zero modes of the domain wall operator to study
the topological properties in detail without smearing. We show that the eigenvalues and the chi-
rality properties of the eigenvectors are very similar to those of the Dirac operator with mass term
in the continuum. The finite fifth dimension brings the residual mass into the eigenvectors but
the eigenvectors can still be used to probe the detailed topological properties. We are able to
get the quark bilinear ∑~x,~y〈q̄(~x, t)γ5q(~y, t)〉 through the eigenvectors which contribute to mη and
mη ′ . mη and mη ′ are measured and we expect that we can use the zero modes to improve the
measurements.
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Zero modes of the domain wall operator for 2+1 flavor lattices with a−1 ≈ 1 GeV Duo Guo

1. Introduction

The QCD vacuum has non-trivial topological properties which break the UA(1) symmetry [1].
The symmetry-breaking explains that the masses of η and η ′ are very different. Consequently,
the measurements for η and η ′ require a good sampling over the topological sectors for the lattice
QCD. However, the measurement of the topological properties on the lattices is difficult because
the local fluctuation of the gauge fields is large. The common way to overcome the difficulty is to
smear the field. However, the measurements for η and η ′ are done without smearing. Also, it only
gives the global topological charge and doesn’t give the details of the topological properties.

In [2], we found that for our 24ID a−1 ≈ 1GeV ensemble, even though the global topology is
evolving fine, the autocorrelation time is long and the local topological properties are important.
Here we develop the idea of using the zero modes of the domain wall operator to study the topo-
logical properties. In Section 2, we introduce the lattices and the calculation of the eigenvectors.
In Section 3, we show the results of the eigenvectors. Particularly , we explain our understanding
of the eigenvalues and the chirality of the domain wall eigenvectors. In Section 4, we demonstrate
that we can use the low-lying eigenvectors to construct the quark bilinear that contributes to mη

and mη ′ . We show the measurements for η and η ′ in section 5 and give the conclusion and the
outlook in Section 6.

2. Lattices and calculation details

We consider three ensembles in this study. The action for the three ensembles is the the
Iwasaki+DSDR (Dislocation Suppressing Determinant Ratio) gauge action [3]. The DSDR part
suppresses the changes of the topological charges which is important when the coupling is strong.
The three ensembles include the 243×64, a−1≈ 1GeV ensemble [3] with mπ ≈ 140MeV, 243×64,
a−1 ≈ 2 GeV ensemble with mπ ≈ 300MeV and 123 × 32, a−1 ≈ 1GeV ensemble with mπ ≈
300MeV. For the eigenvectors, we use the implicitly restarted Lanczos algorithm to calculate eigen-
vectors for the 12ID ensemble and the Ritz algorithm to calculate the eigenvectors for the two 24ID
ensembles. The information is listed in Table 1.

During the calculation of the eigenvectors, we use different inputs masses to study the mass
dependence of the eigenvectors. We also varied the length of the fifth dimension, L5, for the 12ID
ensemble. For the two 24ID ensembles, we only calculated on a few configurations due to the
computation limits. More calculation is ongoing under our 2019 US-QCD project.

3. Properties of the low-lying eigenvectors

In this section we show the properties of the low-lying eigenvectors of the lattice Hermition
domain wall operator γ5R5D where D is the Shamir Domain wall operator, R5 is the reflection
operator in the fifth dimension. We start from the continuum limit and consider the Dirac operator
with the mass term. It’ll be shown that the lattice operator with finite L5 is very similar to the
massive Dirac operator in the continuum because of the residual mass. Specifically, we consider
the eigenvalues and chirality of the eigenvectors. The comparison between the topological charge
calculated from the eigenvectors and the gauge fields is also done.

1



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
3
0

Zero modes of the domain wall operator for 2+1 flavor lattices with a−1 ≈ 1 GeV Duo Guo

size a−1 mπ

total
configurations

total
eigenvectors

methods

12×32 1GeV 300MeV 70 3500 Lanczos
24×64 1GeV 140MeV 2 40 Ritz
24×64 2GeV 300MeV 2 60 Ritz

Table 1: Lattices and the eigenvectors

In the continuum, the massless Dirac operator i /D is Hermition and it anticommutes with γ5. It
follows that if the eigenvalue λ = 0, γ5ψ0 = ±ψ0 and 〈ψ0|γ5|ψ0〉 = ±1. If λ 6= 0, γ5ψλ = ψ−λ ,
〈ψλ |γ5|ψλ 〉= 0 and 〈ψλ |γ5|ψ−λ 〉= 1. As a result, the zero modes are chiral and the number of the
zero modes gives the topological charge. This is the index theorem. γ5( /D+m) is the Hermitian
Dirac operator with mass. It can be shown that the eigenvalues λH are related to the eigenvalues
of the massless operator λ by λ 2

H = λ 2 +m2. The anti-commutator can be easily calculated to be
{γ5( /D+m),γ5}= 2m. The chirality can be obtained:

〈ψH
±
√

λ 2+m2 |γ5|ψH
±
√

λ 2+m2〉=
m
λH

=
m

±
√

λ 2 +m2
(3.1)

Note that the mass introduces a scale on which the chirality depends. For all eigenvectors with
λH ≈ m, λ � m, the chirality is close to ±1. This is very different from the massless results.

In fact, the eigenvectors for the Dirac operator with the mass term can be obtained from the
eigenvectors for the massless operator by a rotation:

ψ
H√

λ 2+m2 =
1√
2
(ei θ

2 ψλ + e−i θ

2 ψ−λ )

ψ
H
−
√

λ 2+m2 =
1√
2
(ei θ

2 ψλ − e−i θ

2 ψ−λ )

(3.2)

where θ is given by eiθ = m+iλ√
m2+λ 2 . In general, for two operators with mass m1 and m2, we have:

〈ψH√
λ 2+m2

1
|ψH√

λ 2+m2
2

′〉= cos(θ2−θ1)

〈ψH√
λ 2+m2

1
|ψH
−
√

λ 2+m2
2

′〉= isin(θ2−θ1)
(3.3)

For domain wall lattices, the Hermition operator is DH
DWF = γ5R5DDWF(m). The eigenvalue Λ

should have the following form [4] for the low lying eigenvectors:

Λ
2 = n2(λ 2 +(δm+m)2) (3.4)

Here, m is the input mass. n, δm and λ are the scale factor, the residual mass and the eigenvalue
in the massless continuum, which have to be fitted. The fit of the eigenvalues are shown in Fig
1. The points are the calculated eigenvalues on the lattice for the different input masses. For each
input mass, the 10 lowest eigenvalues are plotted (some of the eigenvalues are very close). We
fit equation (3.4) for the eigenvalues of the different input masses. The curves are then plotted
according to equation (3.4). It can be seen that the equation (3.4) describes the eigenvalues very
well. The fitted residual masses are plotted against L5 in the right graph of Fig 1. The residual mass
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decreases inversely with L5 which agrees with the understanding of the domain wall lattices. The
graphs are for the configurations listed in the caption but the results are similar for all the ensembles
and configurations.

Figure 1: Left: eigenvalues of the lattice operator for different input masses, 24ID a−1 ≈ 2GeV ensemble,
configuration 800; right: fitted residual mass as a function of L5, 12ID ensemble, configuration 700

The anti-commutation relation for the lattice Hermition Dirac operator is: {DDWF ,Γ5} =
2m f Q(w) + 2Q(mp) ≡ 2Q, where Q(w) and Q(mp) are defined in [4]. Γ5 is 1 for s >= Ls/2 and
-1 for s < Ls/2. This means that the chirality of the eigenvector follows:

〈Ψi|Γ5|Ψi〉=
〈Ψi|Q|Ψi〉

Λi
(3.5)

When the numerator on the right hand side is constant for different eigenvectors, the chirality of
the eigenvectors will be anti-proportional to the eigenvalues. This is the analog of equation (3.1)
for the Dirac operator with mass in the continuum. In Fig 2, we show 1/〈Ψi|Γ5|Ψi〉 against the
eigenvalues. The linear relationship shows that 〈Ψi|Q|Ψi〉 is indeed constant for different eigen-
vectors. Under this condition, when the mass increases, there are more eigenvectors with chirality
close to 1 because there are more eigenvalues that are close to the mass. This explains that why
there are multiple negative and positive chiral modes for the heavy mass. The results are similar
for the other ensembles and configurations.

We are also able to study how the eigenvectors themselves change when the mass is changed
and we compare the results to equation (3.2) and (3.3) in the continuum limit. In Fig 3, we show
the inner product between eigenvectors for different masses. The x and y axis are the index of the
eigenvectors of the different input masses. A good agreement with equation (3.2) and (3.3) is found
for 24ID a−1 ≈ 2GeV. For the 12ID a−1 ≈ 1GeV, the agreement is poor which means that for the
coarse lattice, it’s further away from the continuum limit.

For finite L5, the residual mass makes it hard to get the true zero-modes. To understand the
L5 effect, we calculate the eigenvectors at different L5. In Fig 4, we show the matrix element
〈Ψi|Γ5|Ψ j〉 where the diagonal elements are the chirality. For small L5, it can be seen that there are
both positive and negative modes because of the large residual mass. When L5 is increased, these
modes gradually disappear. When L5 = 192 , there is one distinct zero modes. However, large
mixing can still be seen which means that it’s very hard to get rid of the residual mass effect.
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Figure 2: 1/〈Ψi|Γ5|Ψi〉 as a function of eigenvalues, 24ID a−1 ≈ 2GeV ensemble, configuration 800

Figure 3: Left: Inner product between the eigenvectors with m = 0.000525 and m = 0.00604 for the 24ID,
a−1 ≈ 2GeV ensemble, config 800; right: Inner product between eigenvectors with m = 0.01 and m = 0.02
for the 12ID ensemble, config 700

Lastly, we calculate the net topological charge by counting the net chiral modes. We consider
chiral modes (|〈Ψi|Γ5|Ψi〉| >= 0.9) and round the chirality to ±1. For the results from the field
strength (FF̃), we first ran the Wilson flow with the flow time t = 5.3. The results are in the left
graph of Fig 5 and one can see that the results are similar. However, for the eigenvectors, the
measurements are done on the original lattices without smearing.

In summary, the eigenvalues and the chirality of the domain wall operator are described by the
massive Dirac operator in the continuum. The finite L5 brings in a mass scale and the massless limit
is hard to reach. However, we obtained the detailed topological properties without the smearing.

4. From eigenvectors to the quark bilinear

In order to connect the topological properties and η ′, we need to compare our results with the
correlators to which the masses are fitted. Here we consider the quark bilinear ∑~x,~y〈q̄(~x, t)γ5q(~y, t)〉
on the time slice which contributes significantly to the calculation of mη and m′η . The direct

4



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
3
0

Zero modes of the domain wall operator for 2+1 flavor lattices with a−1 ≈ 1 GeV Duo Guo

Figure 4: 〈Ψi|Γ5|Ψ j〉 for different L5, 12ID ensemble, configuration 700

Figure 5: Left: topological charge calculated from the eigenvectors and the field strength; right: the quark
bilinear calculated from the eigenvectors and the direct calculation. Both results are for 12ID ensemble,
configuration 200 to 800 with a separation of 10

calculation is obtained by applying the inverse of /D to a wall source. However, one can also
obtain the results by using the near-zero eigenvectors. The idea is very similar to the low-mode
approximation. The formula is:

∑
~x,~y
〈q̄(~x, t)γ5q(~y, t)〉= ∑

n

Tr(∑
~x,~y
(Ψ†

n(~x, t)Ψn(~y, t)))

Λn
(4.1)

We use different number of eigenvectors and the results are shown in Fig 5. Note that the results
from the eigenvectors could approximate the direct calculation very well. It’s interesting that we
can approximate the direct calculation with only 5 eigenvectors. This shows that it’s really topo-
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size a−1 mπ mη mη ′ θ

24x64 1 0.140 0.523(25) 0.924(113) -18.6(6.7)◦

12x32 1 0.300 0.551(29) 1.17(24) -11.3(5.0)◦

Experiment - - 0.548 0.958 -10◦ ∼ -20◦

Table 2: mη , mη ′ and the mixing angle θ

logical zero modes that are involved in this quark bilinear and thus mη ′ .

5. η and η ′ mass

The calculation for mη , mη ′ and the mixing angle θ is the same as [5] which we followed
[2]. In table 2, we show the results for the 12ID ensemble and 24ID coarse ensemble. The results
for the 24ID ensemble are the same as [5] and we include the results for the 12ID ensemble here.
Although the results agree with the theoretical values, the error for η ′ is particularly large. We
showed that there might be long autocorrelation in [5]. To investigate the autocorrelation in details,
we believe the low lying eigenvectors studied in this proceeding will be a very effective tool.

6. Conclusion and outlook

We investigated the properties of the zero-mode eigenvectors of the Hermitian domain wall
Dirac operator. We find that eigenvalues and chirality properties are very similar to those of the
Hermitian massive Dirac operator in the continuum. For the lattice operator, because of the finite
L5 effect, there is always a mass scale in the eigenvectors. However, we can still obtain topological
properties from the low-lying eigenvectors. The advantage of using the operator is that no smearing
is required and the detailed properties can be obtained.

We also obtain the quark bilinear ∑~x,~y〈q̄(~x, t)γ5q(~y, t)〉 using the eigenvectors. This is a direct
evidence showing that topological properties affect the Fermion propagator and η ′. We are also able
to obtain mη and mη ′ . However, the current results for the masses are not very satisfying because of
topological issues. We believe that once we have more statistics and use the tools of eigenvectors
to study the topological evolution in more details, we will be able to obtain more precise results for
η ′ and η . Furthermore, we are also trying to use different operators to further constrain the masses.
These investigations are in the process and they’ll give us a better understanding of the topological
properties of the fields and η ′ and η .
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