
P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
3
9

Exclusive Channel Study of the Muon HVP

Mattia Bruno
Theoretical Physics Department,
CERN, 1211 Geneve 23, Switzerland
E-mail: mattia.bruno@cern.ch

Taku Izubuchi
Department of Physics and RIKEN-BNL Research Center,
Brookhaven National Laboratory, Upton, NY, 11973, USA
E-mail: izubuchi@bnl.gov

Christoph Lehner
University of Regensburg, 93040 Regensburg, Germany, and
Department of Physics,
Brookhaven National Laboratory, Upton, NY, 11973, USA
E-mail: clehner@quark.phy.bnl.gov

Aaron S. Meyer∗

Department of Physics,
Brookhaven National Laboratory, Upton, NY, 11973, USA
E-mail: ameyer@quark.phy.bnl.gov

The Hadronic Vacuum Polarization (HVP) is a dominant contribution to the theoretical uncer-
tainty of the muon anomalous magnetic moment. The uncertainty in a lattice QCD calculation of
the connected light-quark contribution to the HVP is dominated by the long-distance region of the
vector correlation function. Explicit studies of the exclusive channels of the HVP diagram make it
possible to reconstruct the long-distance behavior of the correlation function. This removes most
of the statistical uncertainty of the correlation function. In these proceedings, preliminary results
of an exclusive study of the isospin symmetric connected-only vector-vector correlation function
using a hybrid of distillation and A2A techniques are presented. The computation is performed on
2+1 flavor Möbius Domain Wall Fermion ensembles with physical pion mass. Reconstruction of
the long-distance correlation function will enable lattice-only calculations of the HVP to achieve
precision similar to estimates of the HVP from the R-ratio method on the timescale of the new
experimental measurements of the muon anomalous magnetic moment.
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1. Introduction

The Hadronic Vacuum Polarization (HVP) contribution to the muon anomalous magnetic mo-
ment is currently one of the leading contributions to the uncertainty in the theory error budget and is
also one of the most difficult to estimate. The muon g−2 is a precision experiment and is sensitive
to physics beyond the Standard Model. Currently, the experimental results from the BNL g−2 [1]
experiment exhibit a 3.7σ tension with theory predictions, which hints at possible new physics
contributions. With the upcoming release of first results from the Fermilab g−2 experiment, it is
important to have a robust understanding of the current status of the theory prediction for the HVP.

The most precise determinations of the HVP come from studies using electron scattering data
and the optical theorem to compute the spectral density, known as the R-ratio, see for example
Ref. [2]. However, this technique relies on experimental input for the spectral density for which
tensions exist around the rho resonance peak, see, e.g., [3]. This poses a challenge to properly
quantify the uncertainty for the HVP contribution from the R-ratio method.

Lattice QCD (LQCD) is the only first principles method to access aHV P
µ and provides way to

avoid or reduce the use of the R-ratio data. Though LQCD calculations are not as precise as the
R-ratio at this time, the LQCD determinations of the anomalous magnetic moment are improving
rapidly and will be competitive with the R-ratio within the timescale of the Fermilab g−2 exper-
iment. As the LQCD data become more precise, methods such as that in Ref. [4] can be used to
combine the most precise parts of both R-ratio and lattice data to achieve an even smaller total
uncertainty and to reduce the dependence on conflicting R-ratio data sets. In addition, the lattice
QCD calculations may be useful to help resolve these tensions.

In these proceedings, we discuss a recent calculation using LQCD techniques to improve the
estimate of the HVP contribution to (g−2)µ . This calculation is performed with 2+1 flavor sea and
valence Möbius domain wall fermions at physical Mπ . In particular, we use an exclusive study with
a hybrid of distillation [5] and A2A [4] techniques to access the low-energy, long-distance tail of
the local vector correlation function to provide additional constraint on the correlation function, re-
ducing the large statistical uncertainty from that region. We also compute 4π correlation functions
to estimate the uncertainty associated with neglect of many-particle excited states on the HVP. The
distillation/A2A study is applied in conjunction with the improved bounding method [6], which
uses the information garnered from the exclusive study to estimate the remaining contribution to
the correlation function from neglected higher-energy excitations. With these two improvements,
we can achieve approximately a factor of 6 improvement in the uncertainty of the HVP estimate
for one of our most precise ensembles.

2. Analysis Method

The large correlator basis makes the Generalized Eigenvalue Problem (GEVP) [7, 8] an appeal-
ing strategy for computing the spectrum of states and overlap factors of each state in the correlation
functions. To this end, a matrix of correlation functions is constructed from considering a set of N
operators and all cross-combinations of pairs of operators,

〈O†
i (t)O j(0)〉=Ci j(t) =

∞

∑
n
〈Ω|O†

i |n〉〈n|O j |Ω〉e−Ent . (2.1)
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We determine values for | 〈n|O j |Ω〉 | and En from the GEVP, and can therefore partial reconstruct
the correlation function up to state M ≤ N. We call this truncated correlation function CM.

In this project, operators are constructed in the I = 1 isospin representation, with P-wave spin
channel to impact upon HVPµ . First, we define a shorthand for a one-pion operator (ignoring
isospin),

O pπ

π = ∑
xyz

ψ̄(x) f (x− z)e−i~pπ ·~zγ5 f (z− y)ψ(y) , (2.2)

where f (x) is a kernel function representing the distillation smearing. Three main choices of oper-
ators are used (ignoring isospin and momentum averaging for brevity):

• Local vector current ∼ ∑x ψ̄(x)γµψ(x), µ ∈ {1,2,3}

• Smeared vector current ∼ ∑xyz ψ̄(x) f (x− z)γµ f (z− y)ψ(y)

• 2π operators ∼O pπ

π O−pπ

π

with ~pπ ∈ 2π

L ×{(1,0,0),(1,1,0),(1,1,1),(2,0,0)} for the 2π operators. The results for applying
the GEVP to this set of six operators is shown in Fig. 1. From these GEVP results, we can deter-
mine the spectrum for the first five states and overlaps for the first four states reliably. The fifth
spectrum energy is shown to demonstrate control over the next exponential in the sum. We also
test two 4π operators with ~pπ = 2π

L × (1,0,0):

• 4π operators ∼ O pπ

π O−pπ

π O0
πO0

π ,

in a world-first computation of 4π correlation functions in the I = 1 channel. The addition of
these two operators is shown in Fig. 2. Adding the 4π operators does not appreciably change the
GEVP results for the 2π states, as expected from phenomenology. The remaining analysis will
be carried out without the 4π operators in the basis. The 3π states in this isospin channel are not
relevant for this study, since they are required by parity symmetry to have large momenta that put
them at energies above 1 GeV, and also because they exist only as lattice artifacts due to Wick
symmetrization in the continuum and infinite volume limits.

3. Results

The HVP contribution to the anomalous magnetic moment could be computed by applying the
Bernecker-Meyer kernel in the time-momentum representation,

aHV P
µ =

T/2

∑
t=0

wtC(t) , (3.1)

with C(t) from Eq. 2.1 for the local vector current operator and wt from Ref. [9].
Rather than applying Eq. 3.1 as is, the HVP contribution is computed by applying the bounding

method, which employs a strict upper and lower bound on the correlation function [10, 11]. The
bounding method is implemented as

C̃(t; tmax,E) =

{
C(t) t < tmax

C(tmax)e−E(t−tmax) t ≥ tmax

(3.2)
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Figure 1: Left: spectrum obtained from solving the GEVP for a C(t0)C−1(t0 + δ t) for fixed δ t.
Small values of t0 are subject to contamination from excited states, which is observed as an ex-
ponential approach to the asymptotic value at large t0. Right: overlap of the states with the local
vector current operator. Both left and right plots should asymptote to the true value in the large t0
limit. In this figure, the GEVP is solved for a 6-operator basis and δ t = 3 is used.

where the exponential energy parameter E is chosen separately for the upper and lower bound. A
systematic uncertainty is taken for the difference between upper and lower bounds, and optimal
value of tmax is chosen to minimize the uncertainty on aHV P

µ by balancing the systematic from low
timeslices with the statistical uncertainty from large timeslices.

The bounding exponentials E in Eq. 3.2 are determined from known information about the
correlation function. The upper bound uses E ≤ E0, where E0 is the lowest state in spectrum,
which is determined from the GEVP spectrum. The lower bound is determined from the local
effective mass, E ≥ log[ C(tmax)

C(tmax+1) ]. These are strict bounds, but any choice of E greater (lower) than
these values for the lower (upper) bound is also valid. The results for applying the procedure of
Eq. 3.2 for different values of tmax are shown in the left panel of Fig. 4.

Applying the information from the full GEVP spectrum study can be used to improve the
bounding method [6]. The precision of the final result will depend on how well the parameters of
the correlation function C(t) can be reconstructed from the GEVP in the previous section. The left
plot of Fig. 3 shows the overall contributions from the lowest 4 states, and the right plot shows the
ratio of the reconstruction over the local vector current. The 4-state reconstruction gives a good
description of the correlation function down to around timeslice 10, or about 1 fm.

To use the reconstruction from the GEVP results, rather than applying the bounding to the raw
correlation function, C(t) in Eq. 3.2 is replaced by a new correlation function where the reconstruc-
tion of the lowest M states is subtracted away from the full local vector correlation function,

C(t)→C(t)−CM(t) , (3.3)

for t > tmax with CM(t) defined below Eq. 2.1. The values for the lowest M states are taken from
the GEVP. This subtracted correlation function will have a faster falloff for the upper bound, which
now takes E→ EM+1 as the lowest state in the spectrum, and so will converge with the lower bound
at smaller tmax. Here, EM+1 is the next state in the spectrum and can also be estimated from the
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Figure 2: Same as Fig. 1, except for a GEVP with 2 additional 4π operators. The new states that
appear as a result of the addition of the 4π operators are denoted as black crosses, while the colors
and symbols for the other states are kept consistent with Fig. 1. Even with the additional operators,
the spectrum and overlaps are very strongly correlated with those without the additional operators.
The large statistical error for t0 = 4 in the right plot is associated with overlapping error bars, which
results in eigenvalues that are not sorted properly.

GEVP. The anomalous magnetic moment is obtained from the relation

aHV P
µ =

tmax

∑
t=0

wtC(t)+
T/2

∑
t=tmax+1

wtC̃(t; tmax,E)+
T/2

∑
t=tmax+1

wtCM(t) , (3.4)

where the first term on the RHS is the normal HVP kernel (with no subtraction) summed up to tmax,
the second term is bounded by the procedure in Eq. 3.2 after applying the subtraction in Eq. 3.3, and
the third term is the reconstructed correlator fixed by the GEVP fit. The results of the improved
bounding procedure with a 4-state reconstruction implemented in Eq. 3.3 are shown in the right
panel of Fig. 4.

With the techniques applied here, a significant improvement in the statistical precision can
be achieved. Summing the local vector correlation function directly with Eq. 3.1 yields the value
aHV P

µ = 646(38)×10−10. Applying the bounding method without improvement decreases the un-
certainty by a factor of 2, giving aHV P

µ = 631(16)× 10−10, and improvement of the bounding
method by applying a four state reconstruction results in an additional factor of 3 improvement
to give a result of 625.0(5.4)× 10−10. These two values correspond to the values obtained from
optimizing the bounding method in Fig. 4 for the left and right plots, respectively.

4. Outlook and Conclusions

In these proceedings, we have demonstrated techniques for improvement of a lattice QCD-
only calculation of the HVP contribution to the muon g− 2. The exclusive study using distilla-
tion/A2A allows for control of the long-distance tail of the local vector current correlation func-
tion. The large statistical uncertainty of this tail is replaced by the significantly smaller systematic
uncertainty associated with fitting systematic constraints. The bounding method provides a robust
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Figure 3: Left: Integrand of aHV P
µ plotted as a function of t/a. The local vector current correlation

function by itself is plotted as black crosses, and the N-state reconstruction obtained from the
GEVP are shown in colors. As more states are added to the correlation function reconstruction,
the resulting curve shape matches the local vector current down to shorter distance. Right: Ratio
of the N-state reconstructions normalized by the local vector current correlation function. The
uncertainty on the local vector current correlation function is denoted by the gray band. As more
states are added, the ratio of reconstruction over local vector current approaches 1, and the 4-state
reconstruction gives a reconstruction consistent with the local vector current to within 1σ after
about t/a = 10.

way to estimate the systematic effects of the reconstruction on the large-time correlation function.
The reconstruction of the low-energy spectrum and overlaps of the local vector current correla-
tion function is also used to improve the bounding method, garnering an additional factor gain in
the precision. With these techniques applied, the precision on the HVP contribution to the muon
anomalous magnetic moment is improved by about a factor of 6, from aHV P

µ = 646(38)×10−10 to
aHV P

µ = 625.0(5.4)× 10−10 on one ensemble. We have also computed the contribution from the
lowest 4π states in the vector current correlator and found these contributions to be negligible.

The techniques used here were formerly applied in Ref. [6] to the HVP on two different lattice
volumes and found to be precise enough to explicitly resolve the finite volume contributions at
physical Mπ . We are currently working on computing the HVP contribution on another ensemble
closer to the continuum limit. This ensemble, combined with the strategies demonstrated in these
proceedings, can be used to greatly improve the precision on the HVP contribution from 14×10−10

down to 5× 10−10, with an additional improvement after the full set of systematic improvements
are included. With these improvements in estimates of the uncertainty, it is foreseeable that the
precision on the HVP from theory will be able to match the experiment by the time the Fermilab
g−2 experiment reaches its final precision.
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Figure 4: Bounding method applied to the local vector current correlation function. The upper
bound and lower bound are applied as a function of tmax/a along the horizontal axis. The vertical
axis is aHV P

µ in units of 10−10 as measured from summing up the timeslices on the lattice. The
left plot shows the bounding method with no improvement, and the right plot shows the improved
bounding method with a 4-state reconstruction applied. As more states are added to the reconstruc-
tion, the upper and lower bounds converge at shorter tmax. The red point on the left side of both
plots shows the optimal value obtained by picking the timeslice that minimizes the uncertainty
(numerical values given in the text). In the right plot, the intermediate values from the N-state
reconstructions with N < 4 are shown as well.
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