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We continue our simulations of lattice QCD at finite quark-number chemical potential,µ , using

the complex-Langevin equation (CLE) with gauge-cooling and adaptive updating. The CLE is

used because QCD at finite finiteµ has a complex fermion determinant, which prevents use of

standard simulation methods. Simulations using the standard lattice action show a transition from

hadronic to nuclear matter forµ < mπ/2 rather than the expectedµ ≈ mN/3. This suggests that

the CLE is being influenced by the phase-quenched theory, which has a transition atµ = mπ/2.

We are therefore performing CLE simulations with a new action which includes an irrelevant

chiral 4-fermion interaction. This separates the physics at energies of order of the pion mass and

smaller from that at energies of the other hadrons. In doing this, it breaks the extended symmetry

of the phase-quenched theory over that of the full theory, raising the masses of the extra pion-like

excitations consisting of a quark and a conjugate quark, which could otherwise produce such an

anomalous transition. Our preliminary CLE simulations using massless quarks, so thatmπ = 0,

show no transition atµ = mπ/2= 0, but do show a transition at an appreciably higher value ofµ .

It remains to be seen if this transition is near tomN/3.
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1. Introduction

QCD at finite quark-/baryon-number describes nuclear matter. Because QCD at finite quark-
number density has a sign problem, standard methods of simulating it on the lattice, which are based
on importance sampling, fail. When one implements finite density by using a quark-number chem-
ical potential,µ , the sign problem manifests itself as a complex fermion determinant. One promis-
ing simulation method which can cope with complex ‘probabilities’ is the complex-Langevin equa-
tion (CLE) [1, 2, 3, 4] However, the validity of this method can only be proved if the drift term in
the CLE is holomorphic in the fields, and the domain over whichthe fields vary is exponentially
bounded. For (lattice) QCD at finiteµ , zeros of the fermion determinant give poles in the drift
term, so the drift term is meromorphic, not holomorphic [5, 6, 7, 8, 9, 10, 11, 12, 13]. Hence
careful testing of the CLE is needed to determine over what ifany range of parameters, the CLE
produces correct results. The CLE has been used to study lattice QCD at finiteµ in the heavy-dense
limit [14, 15, 16, 17, 18, 19]. Less extensive studies have been made of full lattice QCD at finiteµ
[20, 16, 21, 22, 23, 24, 25, 26, 27].

We have performed CLE simulations of 2-flavour lattice QCD atβ = 6/g2 = 5.6, 5.7 [28]
and some preliminary simulations atβ = 5.8. Although these indicate that, for sufficiently weak
coupling, correct results are obtained forµ << mπ/2 and forµ large enough to produce saturation,
these simulations produce incorrect results for intermediate µ values. In particular, they show a
transition from hadronic to nuclear matter atµ < mπ/2 instead of the predictedµ ≈ mN/3. While
it is possible that the correct physics might be obtained forsufficiently weak coupling, we are
testing modifying the lattice action as a way of producing more physical results.

The action we choose is the standard unimproved staggered-quark action with an additional
chiral 4-fermion interaction which preserves theU(1) chiral symmetry of the original action. Since
this additional term is an irrelevant operator it should notchange continuum physics. This term sep-
arates the low energy physics associated with the pion mass from the high energy physics associated
with the other hadrons. QCD can then be described in terms of pions, heavy ‘constituent’ quarks
and gluons rather than in terms of light ‘current’ quarks andgluons. With this action, the additional
chiral symmetry breaking of the phase-quenched theory is broken, driving the extra pion-like exci-
tations of a quark and a conjugate quark to higher mass. Our preliminary CLE simulations with this
action and massless quarks at finiteµ show no transition atµ = mπ/2= 0, but do show a transition
at a considerably higherµ . It will require simulations of the phase-quenched theory based on this
action to decide whether this improved behaviour indicatesthat this is the expected transition from
hadronic to nuclear matter, or whether it is a transition associated with the new phase-quenched
theory at half the mass of its heavy pion-like excitations with quark-number 2.

2. Lattice QCD with a chiral 4-fermion interaction at finite µ

After introducing auxiliary fieldsσ andπ, our modified Euclidean action for staggered fermions
is:

L =
1
4

FµνFµν + ψ̄(D/+ γ4µ + σ + iγ5τ3π +m)ψ +
γNf

8
(σ2 + π2). (2.1)

Such theories have been studied atµ = 0 [29], and forµ 6= 0 [30, 31].
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After integrating out the fermion fields, the lattice actionis

S= β ∑
�

{

1−
1
6

Tr[UUUU +(UUUU)−1]

}

−
Nf

4
Tr{ln[M(U,µ ,σ ,π)]}+

Nf γ
8 ∑̃

s
(σ2 + π2)

(2.2)
where(s̃) refers to sites on the dual lattice and the Dirac operatorM is

M = D(U,µ)+
1
16∑

i

[σi + iε(n)πi ]+m (2.3)

whereD(U,µ) is the staggeredD/ in the presence of quark-number chemical potentialµ andi runs
over the 16 sites on the dual lattice adjacent siten and backward links are represented byU−1. We
shall henceforth refer to this theory as chiral QCD,χQCD.

We note that this lattice action has aU(1) chiral symmetry atm= 0. The action is invariant
under the global chiral transformation

σi + iπi → eiφ [σi + iπi] (2.4)

whence

σi + iε(n)πi → eiφε(n)[σi + iε(n)πi]. (2.5)

Since the Jacobian of this transformation is 1, the theory isinvariant under this transformation.
Hence, when〈σ〉 is non-zero,π is a massless Goldstone boson.

The complex Langevin equations are:

−i

(

d
dt

Ul

)

U−1
l = −i

δ
δUl

S(U,σ ,π)+ ηl (2.6)

whereηl = ηα
l λ α , and

dσi

dt
= −

δ
δσi

S(U,σ ,π)+ ησ
i (2.7)

dπi

dt
= −

δ
δπi

S(U,σ ,π)+ ηπ
i

ηα
l , ησ

i , ηπ
i are independent gaussian random numbers appropriately normalized. We discretize

this CLE as we did for the standard action, applying gauge-cooling [32] and adaptive updating.

3. Simulations of latticeχQCD at zero temperature

We simulate 2-flavour (Nf = 2) χQCD with β = 5.6, γ = 5, m= 0 on a 164 lattice at finite
µ . At µ = 0 and forµ large enough to produce saturation, this lattice is large enough that the
theory is in the confined phase, and at a reasonable approximation to zero temperature. We are
currently performing simulations at a selection of intermediate µ values on a 163 ×36 lattice to
check that 164 is adequate to approximate zero temperature. Note, the addition of the 4-fermion
interaction does allow us to simulate atm = 0 where we know thatmπ = 0. β = 6/g2 = 5.6
represents a moderate gauge coupling. Whileγ = 5 represents a relatively large 4-fermion coupling
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(γ is inversely proportional to the 4-fermion coupling), it isnot small enough to produce chiral-
symmetry breaking (χSB) without the gluon interactions.γ = 5 was chosen since it is small enough
to allow us to distinguishχSB atm= 0 on a 164 lattice.

To date, we have performed CLE simulations ofχQCD with these parameters for 0≤ µ ≤ 0.6,
performing runs of 2×106 updates perµ , except close to the transition where we performed 3×106

updates perµ . We see evidence for a phase(?) transition forµ ≈ 0.35. We also performed a short
simulation atµ = 1.5 where we observe saturation.

First we examine the 2 order parameters which measure the chiral condensate. These are〈ψ̄ψ〉

and〈σ〉. These are not independent, but are related by

〈ψ̄ψ〉 = γ〈σ〉. (3.1)

Because we are simulating at zero quark mass, the direction of the symmetry breaking in the(σ ,π)

or (ψ̄ψ , ψ̄γ5ξ5ψ) plane is arbitrary. In fact, because we use a finite lattice, this direction rotates
during the simulation, which is how the fact that there is no spontaneous symmetry breaking on a
finite lattice is enforced. We therefore use the replacements

σ =
√

[real(σ)]2 +[real(π)]2 (3.2)

and
ψ̄ψ =

√

[real(ψ̄ψ)]2 +[real(iψ̄γ5ξ5ψ)]2, (3.3)

which approach the actual chiral condensates in the large lattice limit. Noteσ , π, ψ̄ψ andiψ̄γ5ξ5ψ
are lattice (but not ensemble) averages. We note that now, because of fluctuations, equation 3.1 is
only true in the infinite volume limit. Note that the imaginary parts ofσ , π, ψ̄ψ andiψ̄γ5ξ5ψ are
very small and have been neglected.

Figure 1: Chiral condensates〈σ〉 and〈ψ̄ψ〉 as functions ofµ .

Figure 1 shows the chiral condensates〈σ〉 and〈ψ̄ψ〉 as functions ofµ obtained from our CLE
simulations. We observe that there is no sign of a transitionat µ = mπ/2 = 0. There is, however,
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a clear sign of a phase transition atµ ≈ 0.35. Therefore the addition of the 4-fermion term has
removed or moved the transition at an anomalously smallµ . This suggests that the transition at
µ ≤ mπ/2, seen in CLE simulations of the original action does indicate that the CLE is being
influenced by the phase-quenched theory with its superfluid transition atµ = mπ/2. It remains
to be seen whether the transition with this new action is the expected hadronic- to nuclear-matter
transition driven by nucleons, or the transition of the new phase-quenched theory driven by the
condensation of the now-heavy quark-conjugate quark pion-like states of that theory. To test this
will require simulating the new phase-quenched theory, andperforming spectroscopy with the new
action and its phase-quenched counterpart. We note that thechiral condensates do not remain
constant up to the transition but rather fall smoothly onceµ > 0. It remains to be seen if this falloff
slows at weaker couplings as is the case with the standard action.

Figure 2: Average plaquette as a function ofµ . Figure 3: Quark-number density as a function ofµ .

Figure 2 shows the average plaquette (Plaquette= 1− 1
6Tr[UUUU +(UUUU)−1]) as a func-

tion of µ . The most striking feature is the sharp minimum atµ ≈ 0.35, consistent with the position
of the transition in the chiral condensates. Figure 3 shows the quark-number density as a function
of µ . It appears to be a smoothly increasing function ofµ ; the rate of increase increases withµ .
For large enoughµ we know that it approaches saturation where the quark-number density is 3,
indicating that all fermion states are filled and the quarks decouple from the gauge fields.

4. Summary, discussion and conclusions

Application of the CLE to simulating lattice QCD at finiteµ using the standard staggered-
quark lattice QCD action predicts a transition from hadronic to nuclear matter at aµ < mπ/2
rather than at the expectedµ ≈ mN/3. This suggests that the CLE is influenced by the phase-
quenched theory with its superfluid transition atµ = mπ/2, as is observed in random matrix models
[33, 34]. (Note: there are indications that gauge-cooling might help solve this problem for random
matrix models [35].) We are therefore performing CLE simulations using an action incorporating
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a chiral 4-fermion interaction (χQCD), which explicitly breaks the additional chiral symmetry of
the phase-quenched theory, forcing the massesmΠ of the pion-like excitations, which give rise to
the superfluid transition, to larger values.

Our CLE simulations ofχQCD withm= 0 so thatmπ = 0 show no transition atµ = mπ/2= 0,
but show strong evidence for a phase transition at a higherµ value. It remains to be seen if this
transition is atµ ≈ mN/3, or at the new superfluid transition of the new phase-quenched theory at
µ = mΠ/2. This will require simulations of phase-quenchedχQCD, and spectrum calculations for
χQCD and phase-quenchedχQCD atµ = 0.

We will need to simulate at weaker gauge and 4-fermion coupling to see if this improvement
will survive to the continuum limit. In addition we will needto look for evidence that theµ
dependence of observables below the transition weakens with decreasing coupling. Eventually we
will need to provide 4-fermion couplings with the fullSU(2)×SU(2) chiral symmetry.

Other attempts to remedy the problems of applying the CLE to simulations of lattice QCD at
finite µ involve either adding additional relevant operators [36] to the QCD action which improve
the behaviour of the CLE and taking the limit as these extra operators vanish, or modifying the
dynamics by adding irrelevant terms to the drift term [37]. Since these irrelevant terms have no
domain of holomorphicity, one must take the limit as these extra terms vanish.
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