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We continue our simulations of lattice QCD at finite quarkwier chemical potentialy, using
the complex-Langevin equation (CLE) with gauge-coolind adaptive updating. The CLE is
used because QCD at finite finitehas a complex fermion determinant, which prevents use of
standard simulation methods. Simulations using the standtice action show a transition from
hadronic to nuclear matter far < m;/2 rather than the expected~ my/3. This suggests that
the CLE is being influenced by the phase-quenched theorghatas a transition gt = my/2.
We are therefore performing CLE simulations with a new actichich includes an irrelevant
chiral 4-fermion interaction. This separates the physi@nargies of order of the pion mass and
smaller from that at energies of the other hadrons. In ddiigy it breaks the extended symmetry
of the phase-quenched theory over that of the full theorsimg the masses of the extra pion-like
excitations consisting of a quark and a conjugate quarkghvbould otherwise produce such an
anomalous transition. Our preliminary CLE simulationsngsinassless quarks, so tmg = 0,
show no transition gt = m;/2 = 0, but do show a transition at an appreciably higher valye. of
It remains to be seen if this transition is neanig/3.
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1. Introduction

QCD at finite quark-/baryon-number describes nuclear maBecause QCD at finite quark-
number density has a sign problem, standard methods ofaimgit on the lattice, which are based
on importance sampling, fail. When one implements finitesttgriby using a quark-number chem-
ical potential,u, the sign problem manifests itself as a complex fermionrdgteant. One promis-
ing simulation method which can cope with complex ‘probiéibs’ is the complex-Langevin equa-
tion (CLE) [1, 2, 3, 4] However, the validity of this methodrcanly be proved if the drift term in
the CLE is holomorphic in the fields, and the domain over whighfields vary is exponentially
bounded. For (lattice) QCD at finite, zeros of the fermion determinant give poles in the drift
term, so the drift term is meromorphic, not holomorphic [5,768, 9, 10, 11, 12, 13]. Hence
careful testing of the CLE is needed to determine over whamhyf range of parameters, the CLE
produces correct results. The CLE has been used to stuidg Q€D at finiteu in the heavy-dense
limit [14, 15, 16, 17, 18, 19]. Less extensive studies hawenlbaade of full lattice QCD at finitg
[20, 16, 21, 22, 23, 24, 25, 26, 27].

We have performed CLE simulations of 2-flavour lattice QCIBat 6/g° = 5.6, 5.7 [28]
and some preliminary simulations fAt= 5.8. Although these indicate that, for sufficiently weak
coupling, correct results are obtained fox < m;/2 and foru large enough to produce saturation,
these simulations produce incorrect results for interatedi values. In particular, they show a
transition from hadronic to nuclear matteriakc m;;/2 instead of the predicted ~ my /3. While
it is possible that the correct physics might be obtainedstdficiently weak coupling, we are
testing modifying the lattice action as a way of producingenghysical results.

The action we choose is the standard unimproved staggeat-@ction with an additional
chiral 4-fermion interaction which preserves thél) chiral symmetry of the original action. Since
this additional term is an irrelevant operator it shouldef@nge continuum physics. This term sep-
arates the low energy physics associated with the pion masdtiie high energy physics associated
with the other hadrons. QCD can then be described in term&obpheavy ‘constituent’ quarks
and gluons rather than in terms of light ‘current’ quarks ghoebns. With this action, the additional
chiral symmetry breaking of the phase-quenched theoryolsdor, driving the extra pion-like exci-
tations of a quark and a conjugate quark to higher mass. @linpnary CLE simulations with this
action and massless quarks at finitehow no transition gt = my;/2 =0, but do show a transition
at a considerably highat. It will require simulations of the phase-quenched theagda on this
action to decide whether this improved behaviour indicttasthis is the expected transition from
hadronic to nuclear matter, or whether it is a transitioroeisged with the new phase-quenched
theory at half the mass of its heavy pion-like excitationthwjuark-number 2.

2. Lattice QCD with a chiral 4-fermion interaction at finite u

After introducing auxiliary fielder andr, our modified Euclidean action for staggered fermions

&= %FWFW + P(D+ yapt + O + i3+ M) + %(GZJF ™). (2.1)

Such theories have been studieguat 0 [29], and foru # 0 [30, 31].
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After integrating out the fermion fields, the lattice actisn

S:ﬁg{l—%w[uuuu +(UUUU)_1]}—¥Tr{|n[ (U, u,0,m) MZ

(2 2)
where(8) refers to sites on the dual lattice and the Dirac operlsitds

M=D(U,u)+ 1620' ie(n)7E]+m (2.3)

whereD (U, u) is the staggere®in the presence of quark-number chemical potentiahdi runs
over the 16 sites on the dual lattice adjacent siéed backward links are representedby!. We
shall henceforth refer to this theory as chiral QGEQCD.

We note that this lattice action hadJd1) chiral symmetry atm= 0. The action is invariant
under the global chiral transformation

o +im — %[0 +im] (2.4)
whence
g +ig(n)m — 2%V [g; +ig(n)7). (2.5)

Since the Jacobian of this transformation is 1, the theoipviariant under this transformation.
Hence, wher{o) is non-zero,Tis a massless Goldstone boson.
The complex Langevin equations are:

(éjtu.) U t= —|—S(U o, 1) +n (2.6)
wheren, =nfA¢, and
do; . 0 o
rra —5—GiS(U707 ) + 1, (2.7)
drg

5 T
o —ES(UﬁJT)JF'?i
n®, n?, n/* are independent gaussian random numbers appropriatetyatived. We discretize
this CLE as we did for the standard action, applying gaugshog [32] and adaptive updating.

3. Simulations of lattice xQCD at zero temperature

We simulate 2-flavourNs = 2) xQCD with 3 = 5.6, y=5, m= 0 on a 18 lattice at finite
U. At u =0 and foru large enough to produce saturation, this lattice is largrugh that the
theory is in the confined phase, and at a reasonable apprixita zero temperature. We are
currently performing simulations at a selection of intediage u values on a 16x 36 lattice to
check that 16 is adequate to approximate zero temperature. Note, théiaudf the 4-fermion
interaction does allow us to simulate mt= 0 where we know tham,; = 0. B = 6/g°> = 5.6
represents a moderate gauge coupling. Whi#e5 represents a relatively large 4-fermion coupling
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(v is inversely proportional to the 4-fermion coupling), itrist small enough to produce chiral-
symmetry breakingfSB) without the gluon interactiony.= 5 was chosen since it is small enough
to allow us to distinguistySB atm= 0 on a 18 lattice.

To date, we have performed CLE simulationsy@dCD with these parameters forOu < 0.6,
performing runs of X 1P updates peft, except close to the transition where we performed 8°
updates pept. We see evidence for a phase(?) transitionifee 0.35. We also performed a short
simulation atu = 1.5 where we observe saturation.

First we examine the 2 order parameters which measure tted chhdensate. These digy)
and(o). These are not independent, but are related by

(@) = v{o). (3.1)

Because we are simulating at zero quark mass, the diredtibie symmetry breaking in th@, )

or (YyY,Pyésy) plane is arbitrary. In fact, because we use a finite lattiis, direction rotates
during the simulation, which is how the fact that there is pordaneous symmetry breaking on a
finite lattice is enforced. We therefore use the replacesnent

o= \/[real(a)]2 + [real( 1)) (3.2)

and

G = \/Ireal ) 2 + [realiGiys&s)]2. (3.3)

which approach the actual chiral condensates in the lattigeldimit. Notea, m, @ andiysésy
are lattice (but not ensemble) averages. We note that naauke of fluctuations, equation 3.1 is
only true in the infinite volume limit. Note that the imagiggrarts ofo, m, Yy andiy@yésy are
very small and have been neglected.

N,=2, B=5.6, y=5 m=0, 16* lattice N,=2, 8=5.6, y=5, m=0, 16" lattice
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Figure 1: Chiral condensate®’) and (/) as functions ofi.

Figure 1 shows the chiral condensates and((/y) as functions ofs obtained from our CLE
simulations. We observe that there is no sign of a transaign= m;/2 = 0. There is, however,
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a clear sign of a phase transition jat~ 0.35. Therefore the addition of the 4-fermion term has
removed or moved the transition at an anomalously smallhis suggests that the transition at
1 < mg/2, seen in CLE simulations of the original action does indidhat the CLE is being
influenced by the phase-quenched theory with its superftaigsition aty = m;/2. It remains
to be seen whether the transition with this new action is ¥peeted hadronic- to nuclear-matter
transition driven by nucleons, or the transition of the ndvage-quenched theory driven by the
condensation of the now-heavy quark-conjugate quark lkenstates of that theory. To test this
will require simulating the new phase-quenched theory,@mertbrming spectroscopy with the new
action and its phase-quenched counterpart. We note thathired condensates do not remain
constant up to the transition but rather fall smoothly oace 0. It remains to be seen if this falloff
slows at weaker couplings as is the case with the standamhact

N;=2, B=5.6, y=5, m=0, 16* lattice N;=2, B=5.6, y=5, m=0, 16* lattice
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Figure 2: Average plaquette as a functionpf  Figure 3: Quark-number density as a functionof

Figure 2 shows the average plaquette (Plaguette- %Tr[UUUU +(UUUU)1)) as a func-
tion of u. The most striking feature is the sharp minimunuat 0.35, consistent with the position
of the transition in the chiral condensates. Figure 3 shbwsjtiark-number density as a function
of u. It appears to be a smoothly increasing functiorupthe rate of increase increases wjth
For large enouglu we know that it approaches saturation where the quark-nuehdmasity is 3,
indicating that all fermion states are filled and the quarsodiple from the gauge fields.

4. Summary, discussion and conclusions

Application of the CLE to simulating lattice QCD at finije using the standard staggered-
quark lattice QCD action predicts a transition from hadeot@ nuclear matter at g < my/2
rather than at the expectgd~ my/3. This suggests that the CLE is influenced by the phase-
quenched theory with its superfluid transitioruat my/2, as is observed in random matrix models
[33, 34]. (Note: there are indications that gauge-coolinghinhelp solve this problem for random
matrix models [35].) We are therefore performing CLE sintiolas using an action incorporating
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a chiral 4-fermion interactiony(QCD), which explicitly breaks the additional chiral symmyebf
the phase-quenched theory, forcing the masse®f the pion-like excitations, which give rise to
the superfluid transition, to larger values.

Our CLE simulations of QCD withm= 0 so thaim;; = 0 show no transition gt = m;/2=0,
but show strong evidence for a phase transition at a highealue. It remains to be seen if this
transition is afu ~ my/3, or at the new superfluid transition of the new phase-queththeory at
U1 =mp /2. This will require simulations of phase-quenchg@CD, and spectrum calculations for
XQCD and phase-quenchg®CD atu = 0.

We will need to simulate at weaker gauge and 4-fermion caggh see if this improvement
will survive to the continuum limit. In addition we will neetb look for evidence that the
dependence of observables below the transition weakehgiedreasing coupling. Eventually we
will need to provide 4-fermion couplings with the fi8lU(2) x SU(2) chiral symmetry.

Other attempts to remedy the problems of applying the CLEMailstions of lattice QCD at
finite u involve either adding additional relevant operators [86fite QCD action which improve
the behaviour of the CLE and taking the limit as these extreratprs vanish, or modifying the
dynamics by adding irrelevant terms to the drift term [37]nc® these irrelevant terms have no
domain of holomorphicity, one must take the limit as thegeagterms vanish.
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