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EM corrections to leptonic pion decay using IVR method Xu Feng

1. Introduction

In the precision flavor physics where lattice QCD interplays with experimental measurements,
the electromagnetic (EM) corrections become important when the lattice calculations reach the
sub-percent precision. A milestone example is the pion and kaon leptonic decay constants. FLAG
Review 2019 [1] reports the average of lattice results fK/ fπ = 1.1932(19). At this precision it is
crucial to include the EM corrections.

Including the photon exchange in the lattice calculations usually causes the power-law finite-
volume (FV) effects. In Ref. [2], a method called infinite-volume reconstruction (IVR) is developed
to remove the power-law FV effects in the EM corrections to the hadron’s mass. Later, this method
has been successfully applied to the calculation of neutrinoless double beta decay [3]. In this work,
we propose to use the IVR method for the lattice QCD calculation of the leptonic pion decay width.

2. Leptonic pion decay in the infinite volume
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Figure 1: Samples of the hadronic and leptonic diagrams for π → `ν(γ) decays.

With EM corrections, the leptonic pion decay amplitude shall be written as

A [π → `ν ] = 〈`ν |LW (0)|π〉+ 1
2

∫
d4x

∫
d4y〈`ν |T [Lem(x)Lem(y)LW (0)]|π〉,

A [π → `νγ] =
∫

d4x〈γ`ν |T [Lem(x)LW (0)]|π〉, (2.1)

where LW =
√

2
2 GFVud Jµ

W ν̄γµ(1− γ5)` is the standard, effective weak Lagrangian and Lem =

eJµ
em Aµ + e ¯̀γµ`Aµ is the EM one. Here Jµ

W and Jµ
em are the relevant weak and EM quark currents.

GF is the Fermi constant, Vud is the CKM matrix element and e is the electric charge.
One can write the leptonic pion decay amplitude as the combination of a hadronic function, a

leptonic function and a possible photon propagator or polarization vector. The hadronic function
contains all the nonperturbative QCD information and shall be calculated using lattice QCD, while
the leptonic one is analytically known. In the Fig. 1 we show the quark contractions for the hadronic
diagrams in the upper panel. The relevant hadronic functions in the infinite volume are given by

Hµ

0 = 〈0|Jµ

W (0)|π(~0)〉,
Hµρ

1 (x) = 〈0|T [Jρ
em(x)J

µ

W (0)]|π(~0)〉,
Hµρσ

2 (x,y) = 〈0|T [Jρ
em(x)J

σ
em(y)J

µ

W (0)]|π(~0)〉, (2.2)
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where |π(~0)〉 indicates the initial pion state with zero spatial momentum. Another useful hadronic
function is

Hρσ

2 (x) = 〈π(~0)|T [Jρ
em(x)J

σ
em(0)]|π(~0)〉. (2.3)

It is related to the EM corrections to the hadron’s mass and can be used in the analysis of the
infrared (IR) divergence as we will show later.

The leptonic contractions are shown in the lower panel of Fig. 1. The relevant leptonic func-
tions are given by

Lµ

0 = ū(~pν)γ
µ(1− γ5)v(~p`),

Lµρ

1 (x) = ū(~pν)γ
µ(1− γ5)S`(0,x)γσ ,v(~p`)e−ip`x

Lµρσ

2 (x,y) = ū(~pν)γ
µ(1− γ5)S`(0,x)γρS`(x,y)γσ v(~p`)e−ip`y, (2.4)

with S`(x,y) the lepton’s propagator.
Using the hadronic and leptonic functions, the amplitudes defined in Eq. (2.1) can be written

as

A [π → `ν ] =

√
2

2
GFVud

(
A0 + e2A2

)
, A [π → `νγ] =

√
2

2
GFVud eA1, (2.5)

with

A0 = Hµ

0 Lµ

0 ,

A1 =
∫

d4x
[
Hµρ

1 (x)Lµ

0 +Hµ

0 Lµρ

1 (x)e−ip`x
]

ε
ρ∗
λ
(pγ)e−ipγ x,

A2 =
1
2

∫
d4x

∫
d4y

[
Hµ

0 Lµρσ

2 (x,y)+Hµρ

1 (x)Lµσ

1 (y)+Hµρσ

2 (x,y)Lµ

0

]
Sρσ

γ (x,y). (2.6)

Here ε
ρ∗
λ
(pγ) is the photon’s polarization vector with λ the polarization direction. Sρσ

γ (x,y) is the
photon’s propagator in Euclidean spacetime

Sρσ

γ (x,y) =
∫ d4 p

(2π)4

Ŝρσ

γ (p)
p2 eip(x−y) =

∫ d3~p
(2π)3

Ŝρσ

γ (iE,~p)
2E

e−E|tx−ty|ei~p·(~x−~y), E = |~p|. (2.7)

The structure of Ŝρσ

γ is related to the gauge used for the photon’s propagator. Summing over the
polarization directions, we have

∑
λ

ε
ρ∗
λ
(pγ)ε

σ

λ
(pγ) = Ŝρσ

γ (pγ). (2.8)

The decay width for π+→ `+ν(γ) is given by

Γ =
1
2

G2
FV 2

ud

(
Γ
(0γ)+Γ

(1γ)
)
, (2.9)

with

Γ
(0γ) =

∫
dΦ2(pπ ; pν , p`)

{
|A0|2 +2e2 Re [A0A2]

}
,

Γ
(1γ) =

∫
dΦ3(pπ ; pν , p`, pγ)e2|A1|2. (2.10)

Here dΦ2 and dΦ3 indicate the 2-particle and 3-particle phase space.
It is worthwhile to mention that the calculation of amplitude A2 is demanding as it requires the

integral of Hµρσ

2 (x,y) over both~x and~y simultaneously. As a consequence the computational time
scales as L6 with L the lattice size. Here we can simplify the integral as∫

d4x
∫

d4yHµρσ

2 (x,y)Lµ

0 Sρσ

γ (x,y) =
∫

d4x
∫

dty Ĥµρσ

2 (x; ty,~0)L
µ

0 Sρσ

γ (x; ty,~0) (2.11)
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with

Ĥµρσ

2 (x; ty,~0)≡
∫

d3~z〈0|T [Jρ
em(x)J

σ
em(ty,~0)J

µ

W (0,−~z)]|π(~0)〉. (2.12)

When one generates the hadronic function Ĥµρσ

2 (x; ty,~0), the integral over~z can be performed in
advance. Thus in right-hand-side of Eq. (2.11), only the spatial integral over~x is required.

3. Infinite-volume reconstruction method

Now we move from the infinite-volume analysis in the previous section to a FV lattice calcu-
lation. The hadronic functions given in Eq. (2.2) shall be replaced by lattice quantities, which are
specified by a subscript L here

Hµ

0 , Hµρ

1 (x), Ĥµρσ

2 (x; ty,~0) ⇐ Hµ

0,L, Hµρ

1,L (x), Ĥ
µρσ

2,L (x; ty,~0). (3.1)

Although the replacement of Hµ

0 by Hµ

0,L only brings in exponentially-suppressed FV effects, such
replacements for Hµρ

1 (x) and Ĥµρσ

2 (x; ty,~0) can cause the power-law FV effects as explained later.
Therefore, we propose to use the IVR method [2] to remove these power-law effects.

3.1 Hµρ

1 (x)

Let us start with the case of Hµρ

1 (x). At tx < 0, we have

Hµρ

1 (x) = 〈0|Jµ

W (0)Jρ
em(x)|π(~0)〉 ∼ e−mπ

√
~x2+t2

x e−mπ tx . (3.2)

For large |tx|, e.g. |tx| � |~x|, Hµρ

1 (x) scales as an O(1) quantity. As a consequence, the replacement
of Hµρ

1 (x) by Hµρ

1,L (x) results in a power-law FV effect.

Following the method developed in Ref. [2], we choose an appropriate time ts (0 < ts . L),
which ensures the ground intermediate state dominance in Hµρ

1 (x). Namely, for t ≤ −ts the
hadronic function Hµρ

1 (x) is given by

Hµρ

1 (t,~x) .
=
∫ d3~p

(2π)3 〈0|J
µ

W (0)|π(~p)〉 1
2Eπ

〈π(~p)|Jρ
em(0)|π(~0)〉e(Eπ−mπ )te−i~p·~x, (3.3)

where the symbol .
= denotes the omission of the excited states. The spectral weight function can

be determined using Hµρ

1 (−ts,~x) as an input

〈0|Jµ

W (0)|π(~p)〉 1
2Eπ

〈π(~p)|Jρ
em(0)|π(~0)〉

.
=
∫

d3~xHµρ

1 (−ts,~x)ei~p·~xe(Eπ−mπ )ts . (3.4)

Putting Eq. (3.4) into Eq. (3.3), we have

Hµρ

1 (t,~x) =
∫

d3~x′Hµρ

1 (−ts,~x′)
∫ d3~p

(2π)3 ei~p·(~x′−~x)e(Eπ−mπ )(t+ts). (3.5)

It means that the hadronic function Hµρ

1 (t,~x) at t ≤ −ts can be reconstructed using Hµρ

1 (−ts,~x).
Therefore, the replacement can be performed through

Hµρ

1 (t,~x) ⇐ Hµρ

1 (−ts,~x) ⇐ Hµρ

1,L (−ts,~x). (3.6)

As we have avoided using Hµρ

1,L (x) at large |t|, the replacement given in (3.6) only amounts for
exponentially-suppressed FV effects. For more details, we refer the readers to Ref. [2].
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3.2 Ĥµρσ

2 (x; ty,~0)

For Ĥµρσ

2 (x; ty,~0) we assume tx ≥ ty without loss of generality. We classify the hadronic
functions into three classes:

I : tx ≥ ty > 0, II : tx ≥ 0≥ ty, III : 0 > tx ≥ ty. (3.7)

For class I, we can split the hadronic function into two parts

Ĥµρσ

2 (x; ty,~0) = Ĥµρσ ,(0)
2 (x; ty,~0)+Hµρσ ,(1)

2 (x; ty,~0), (3.8)

with

Ĥµρσ ,(0)
2 (x; ty,~0) =

∫
d3~z〈0|T [Jρ

em(x)J
σ
em(ty,~0)]|0〉〈0|J

µ

W (0)|π(~0)〉,

Ĥµρσ ,(1)
2 (x; ty,~0) = Ĥµρσ

2 (x; ty,~0)− Ĥµρσ ,(0)
2 (x; ty,~0). (3.9)

The first term Ĥµρσ ,(0)
2 (x; ty,~0) is a vacuum contribution and shall be subtracted. The remaining

contribution from Hµρσ ,(1)
2 (x; ty,~0) is exponentially suppressed at large |~x|. Therefore, the replace-

ment of Ĥµρσ

2 (x; ty,~0) by Ĥµρσ

2,L (x; ty,~0) only causes the exponentially-suppressed FV effects.
For class II, the power-law FV effects could be introduced in the substitution of Ĥµρσ

2 (x; ty,~0)
using the lattice data at large |ty|. So we make the replacement of

Ĥµρσ

2 (x; ty,~0) ⇐ Ĥµρσ

2 (x;−ts,~0) ⇐ Ĥµρσ

2,L (x;−ts,~0) (3.10)

for ty ≤−ts and protect the lattice results from the power-law FV contamination.
For class III, when tx− ty ≥ ts, we make the replacement of

Ĥµρσ

2 (x; ty,~0) ⇐ Ĥµρσ

2 (x; tx− ts,~0) ⇐ Ĥµρσ

2,L (x; tx− ts,~0). (3.11)

Again the hadronic function at large time separation tx− ty ≥ ts is replaced by the one at modest
time tx− ty = ts, where ts is chosen to guarantee the ground-state dominance.

4. Cancellation of infrared divergence

It is known that the IR divergence cancels in the combination of the decay widths Γ(0γ) and
Γ(1γ). In Ref. [4], two different IR regulators are used in Γ(0γ) and Γ(1γ), respectively. In the evalu-
ation of Γ(0γ), by using QEDL technique the non-zero lattice momentum p = 2π/L is used as an IR
cutoff, while for Γ(1γ) the nonzero photon mass is used as an IR regulator. The perturbative match-
ing between the two different IR schemes is carried out under the assumption that the hadron’s
internal structure can be neglected in the IR limit and thus the hadron can be treated as a point-like
particle. The pioneering work [5] is done following this direction.

J
µ
Wℓ+

ν

J
µ
Wℓ+

ν

Figure 2: Samples of diagrams contributing to Γ(1γ) (left) and Γ(0γ) (right).

Using the IVR method, we will show that the IR divergence can be cancelled in a relatively
simple way. Here we take Fig. 2 as an example. In the left panel, the decay width Γ(1γ) receives
the contribution from the amplitude square |A|2 with A defined as

A =
∫

d4xHµρ

1 (x)Lµ

0 ε
ρ∗
λ

e−ipγ x. (4.1)
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We concentrate on the integral region t ∈ (∞,−ts] and have the amplitude defined as

Â≡
∫ −ts

−∞

dt
∫

d3~xHµρ

1 (t,~x)Lµ

0 ε
ρ∗
λ

eEγ te−i~pγ ·~x .
= H̃µρ

1 (−ts,−~pγ)L
µ

0 ε
ρ∗
λ

e−Eγ ts

Eπ +Eγ −mπ

, (4.2)

with

H̃µρ

1 (−ts,−~pγ) =
∫

d3~xHµρ

1 (−ts,~x)e−i~pγ ·~x. (4.3)

For ~pγ = 0, we have H̃µρ

1 (−ts,~0)
.
= Hµ

0 δ ρ0.

We can split
∣∣Â∣∣2 into two terms ∣∣Â∣∣2 .

=
∣∣Â∣∣2con +

∣∣Â∣∣2div (4.4)

with the definitions∣∣Â∣∣2con =
∫

d3~x
∫

d3~yHµρ

1 (−ts,~x)H
µ ′ρ ′∗
1 (−ts,~y)

(
e−i~pγ ·(~x−~y)−1

)
Lµ

0 Lµ ′∗
0 ε

ρ∗
ε

ρ ′ e−2Eγ ts

(Eπ +Eγ −mπ)2 ,∣∣Â∣∣2div
.
= |Hµ

0 Lµ

0 |
2
ε

0∗
ε

0 e−2Eγ ts

(Eπ +Eγ −mπ)2 . (4.5)

Note that
∣∣Â∣∣2div is proportional to 1/|~pγ |2 and the phase space dΦ3 is proportional to 1

(2π)3
d3~pγ

2|~pγ | .

Thus
∣∣Â∣∣2div causes an IR divergence to Γ(1γ), while the contributions from

∣∣Â∣∣2con are IR convergent
due to the suppression of the factor e−i~pγ ·(~x−~y)−1.

As a next step, we examine the IR structure in the right panel of Fig. 2, where the decay width
Γ(0γ) receives the contribution from 2Re[BB∗0], with

B≡ 1
2

∫
d4x

∫
dty Ĥµρσ

2 (x; ty,~0)L
µ

0 Sρσ

γ (x; ty,~0), B0 ≡ Hµ

0 Lµ

0 . (4.6)

We concentrate on the integral regions of −T ≤ tx ≤ −ts and −T ≤ ty ≤ tx− ts, and define the
relevant contribution as B̂

B̂≡ 1
2

∫ −ts

−T
dtx
∫ tx−ts

−T
dty
∫

d3~xĤµρσ

2 (x; ty,~0)L
µ

0 Sρσ

γ (x; ty,~0). (4.7)

Again, here ts is chosen to guarantee the ground state dominance. After performing the integral,
we have

B̂ .
=

1
2

∫ d3~p
(2π)3

Hµ

0
2mπ

〈π(~0)|Jρ
em(0)|π(~p)〉

1
2Eπ

〈π(~p)|Jσ
em(0)|π(~0)〉L

µ

0
Ŝρσ

γ (pγ)

2Eγ(
e−(Eπ+Eγ−mπ )ts

Eπ +Eγ −mπ

(T − ts)+
e−(Eπ+Eγ−mπ )(T−ts)−1

(Eπ +Eγ −mπ)2

)
, (4.8)

with pγ = (iEγ ,−~p) and Eγ = |~p|. In Eq. (4.8) the first term in the parenthesis is relevant for the
EM correction to the hadron’s mass and the second term causes the IR divergence as it contains
a factor of 1

2Eγ

1
(Eπ+Eγ−mπ )2 . In the IVR method, the hadronic matrix element in Eq. (4.8) can be

constructed using Hρσ

2 (ts,~x) as an input

〈π(~0)|Jρ
em(0)|π(~p)〉

1
2Eπ

〈π(~p)|Jσ
em(0)|π(~0)〉

.
=
∫

d3~xHρσ

2 (ts,~x)e−i~p·~xe(Eπ−mπ )ts . (4.9)

Here we focus on the IR divergent contribution, namely

B̄≡−1
2

∫ d3~p
(2π)3

Hµ

0
2mπ

∫
d3~xHρσ

2 (ts,~x)e−i~p·~xLµ

0
Ŝρσ

γ (pγ)

2Eγ

e(Eπ−mπ )ts

(Eπ +Eγ −mπ)2 . (4.10)

5
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Again, we split B̄2 into two terms
B̄ = B̄con + B̄div, (4.11)

with

B̄con = −1
2

∫ d3~p
(2π)3

Hµ

0
2mπ

∫
d3~xHρσ

2 (ts,~x)
(

e−i~p·~x−1
)

Lµ

0
Ŝρσ

γ (pγ)

2Eγ

e(Eπ−mπ )ts

(Eπ +Eγ −mπ)2 ,

B̄div = −1
2

∫ d3~p
(2π)3 Hµ

0 Lµ

0

Ŝ00
γ (pγ)

2Eγ

e(Eπ−mπ )ts

(Eπ +Eγ −mπ)2 . (4.12)

Here only B̄div causes the IR divergence to Γ(0γ).
We can combine the |Â|2div contributions to Γ(1γ) and B̄div contributions to Γ(0γ) and obtain

I =
∫

dΦ3(pπ ; pν , p`, pγ) |Â|2div +
∫

dΦ2(pπ ; pν , p`)2Re[B̄divB∗0]

=
∫ d3~pγ

(2π)3

Ŝ00
γ (pγ)

2Eγ

1
(Eπ +Eγ −mπ)2

[
e−2Eγ ts f

(
(pπ − pγ)

2)− e(Eπ−mπ )ts f
(

p2
π

)]
, (4.13)

where the function f (p2) is defined as

f (p2)≡
∫

dΦ2(p; pν , p`) |Hµ

0 Lµ

0 |
2. (4.14)

Here we have used the recursion relation
∫

dΦ3(pπ ; pν , p`, pγ) =
∫ d3~pγ

(2π)3
1

2Eγ

∫
dΦ2(pπ− pγ ; pν , p`).

Note that in Eq. (4.13) the factor in the bracket vanishes in the limit of |~pγ | → 0. Thus the result of
I is IR finite. The calculation of I is simple, as it only requires the lattice QCD inputs of Hµ

0 .

5. Conclusion

In this work, we propose to calculate the leptonic pion decay width using the IVR method.
We give the key ingredients to explain how the power-law FV effects are removed and how the
IR divergence are cancelled in a simple way. In the upcoming work, we will also include the
analysis of the wave function renormalization using the IVR method. We believe that the theoretical
foundation is set up for a realistic lattice calculation of the leptonic pion decay width without power-
law FV errors.
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