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1. Introduction

Our calculation is one of three RBC/UKQCD collaboration calculations of pion scattering
at the physical point, removing an important systematic from previous (e.g. [1][2]) calculations.
We would also like to use our calculation (which uses periodic boundary conditions) to check the
K→ ππ and ππ → ππ G-parity calculations used to determine from first principles the important
Standard Model (SM) ratio ε ′/ε . In particular, our calculation aims to extract infinite volume
scattering phase shifts via the Lüscher formula [3]. Physical kinematics is extracted from an excited
state in each case.

2. Correlator Production

We calculate many correlation functions at lattice spacing 1.015,1.3784GeV (243 DSDR and
323 ensembles respectively at identical physical volumes but both with Lt = 64) on Intel Knight’s
Landing (KNL) clusters using all-to-all propagators [4] and (Zmöbius, Möbius) Domain Wall
fermions. In order to save on computational resources, we use all-mode-averaging (AMA) to
compute on a limited number of gauge configurations exactly and the rest in an inexact way that
introduces some small systematic errors which are corrected using the exact measurements). We
time-split our operators so that one pion is forced to propagate for 3−4 time slices before we cre-
ate/destroy the other pion since this is smaller overlap with the vacuum state for isospin I = 0. We
recover the full point-to-point propagator in the large noise sample limit. We then project our ππ

operators onto definite isospin (I = 0,1,2; isospin is a good symmetry in our simulation). We cal-
culate many momentum combinations up to three units of lattice momenta for an individual meson
(and up to three units of center of mass momentum), so that we can project onto definite irreducible
representations (irreps) of the group of lattice rotations. We denote center of mass frame, one, two,
and three units of center of mass momentum by (respectively) p0, p1, p11, p111. This symmetry
is reduced from the full rotational symmetry group because of lattice discretization. As a result,
we project onto a tower of spin states, but we assume (and have seen some evidence to support) all
higher spins are suppressed relative to J = 0 for our I = 0,2 irrep and J = 1 for our I = 1 irrep.

We calculate beyond the 4π threshold, but again we assume (and have seen some empirical ev-
idence to support the idea) that these contributions are suppressed relative to ππ contributions. We
have this caveat because the formalism to extract continuum phase shifts from inelastic processes
(such as ππ → 4π) does not exist.

3. GEVP, Operator Basis

Our isospin/irrep projected operators have Dirac-gamma structure ψγ5ψ (π operator), ψγµψ

(ρ operator, I = 1), and ψψ (σ operator, I = 0). Our ρ (vector) operator has angular momentum,
so we also need to properly project the γµ polarizations into the proper irrep (row).

For I = 0 we also need to perform vacuum subtraction for disconnected diagrams by subtract-
ing from our (jackknifed) gauge configuration sample the averaged (over gauge configurations, but
not time) bubble. We then multiply source and sink subtracted bubbles to compose the disconnected
diagrams.
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We diagonalize our Hamiltonian (up to excited state effects) via the solution of a generalized
eigenvalue problem (GEVP): C(t)v(t, t0) = λ (t, t0)C(t0)v(t, t0) where we fix t− t0 = const. where
C(t) is a matrix of lattice correlation functions composed of operators projected onto a particular
irrep/isospin and at source, sink separation t. We obtain an asymptotic error O(e−(EN+1−En)t) for an
N dimensional GEVP for energy En [5] (see [6] for further matrix element developments we plan
to use for the full periodic K→ ππ calculation).

4. Removal of Systematic Error Via π → π Correlation Functions

4.1 Around the World Contamination - Vacuum Saturation Subtraction

In any two particle lattice simulation, the finite size of the box necessarily generates around-
the-world (ATW) contamination caused by one particle propagating forward in time and the other
backward. Since the particles do not share too many time slices, one can expect that most of this
effect can be approximated by the non-interacting case. If each single particle correlation function
has (Euclidean) time dependence Cn(t) = e−Ent +e−En(Lt−t) and Cm(t) = e−Emt +e−Em(Lt−t) then the
non-interacting ATW piece is e−Ente−Em(Lt−t)+ e−En(Lt−t)e−Emt . We can see that this term is con-
stant with respect to time if Em =En. Moreover, if scattering identical particles in the center of mass
frame, all ATW terms including the interacting terms are necessarily constant by exchange sym-
metry. If this is the case, we can perform a GEVP matrix subtraction to entirely remove this effect.
We define D(t) ≡ C(t)−C(t− δt) and solve a modified GEVP D(t)v(t, t0) = λ (t, t0)D(t0)v(t, t0)
(at the cost of losing δt time slices from our fitting range).

If instead Em 6= En, (e.g. in the case of moving frames) then the ATW terms become time
dependent. In the case of the N-dimensional GEVP, we get 2N non-interacting terms (in addition
to interacting time dependent terms). The non-interacting terms can be removed via iterated matrix
subtraction, but this is not an economical use of time slices. Instead, we perform Vacuum Satu-
ration Subtraction which removes the non-interacting terms entirely by (roughly speaking) cross-
multiplying the exponential pieces of the cosh of the averaged single particle correlators. Details
of this procedure can be found in [7]. We should mention that this apparently results in improved
agreement with I = 2 Roy equation results, but does not substantially correct the problem for all
I = 0 moving frames (particularly in the 323 ensemble which has a physically smaller time extent).

4.2 Discretization Error - Pion Ratio Method

We note that squaring the averaged single-pion correlation function (being careful about isospin
pieces and time-splitting) gives us the energy of the non-interacting ππ system (defined to be
Eππ,non-interacting, essentially this is 2Eπ at late times in the large statistics limit assuming no dis-
cretization error). We can also obtain this energy from the pion mass via the continuum dispersion
relation 2Eπ = 2

√
m2

π + p2. We naturally expect that the latter formula has less discretization error,
so if we add 2

√
m2

π + p2−Eππ,non-interacting to our (interacting) Eππ , we obtain less discretization
error. As an added bonus, we obtain up to a factor of 10 noise reduction in all isospin channels due
to measurably strong correlations between Eππ and Eππ,non-interacting. This method, known as the
pion ratio method (for historical reasons), is due primarily to X. Feng (initial idea) and C. Lehner
(current form) with development and testing from D. Murphy and the author.
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5. Fitting Procedure (Outline)

We perform a simultaneous fit to the effective masses of the GEVP, looping over fit ranges,
randomly sampling 16 different fit ranges (which empirically gives stable weighted averages) only
if the number of possibilities is combinatorially too large. We display in sections 6 and 7 the
p-value weighted averages of these results.

The I = 2 plot displays a shaded tolerance band representing a 1σ uncertainty on the fit pa-
rameter. Energies displayed are in lattice units. Lines from the dispersion relation

√
m2 + p2 are

also plotted corresponding to the operator momenta used. The number of guage configurations is
displayed in the title as “total, exact”, e.g. 185,7 represent 185 total gauge configurations, 7 of
which are also calculated exactly in order to perform the sample AMA procedure.

Straight lines with arrows joining the 243 and 323 ensemble results. The arrows point in the
direction of the 323. Because of slightly heavier pion mass in the 323, the arrows always flow from
left to right. Given that both points should be the same state (at two different lattice spacing), we
should expect that the arrows should roughly point in the direction of the continuum limit.

We fit to different subsets of the data (referred to as different fit ranges). The number of such
subsets is often combinatorially explosive, so we make data quality cuts and randomly sample
(if the remaining amount is still too large). These cuts include demanding that three points are
fit per energy level, and the points form an arithmetic sequence in (Euclidean) time (only regular
sparsenings are allowed). We then perform a fully correlated (with respect to operators and time
slices) fit, minimizing χ2. If the errors are gaussian, we can find the p-value from Hotelling’s t2

distribution (comparisons to the exact p-value give good empirical agreement). We do so, then
average the different fit range results weighted by this p-value.

For I = 2, we fit to a constant, while for I = 0 we fit to En + an ∗ exp(−(EN+1−En)t) with
2N +1 free parameters (for N operators: an,En,EN+1).
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6. I = 2 (Preliminary)
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Figure 1: I = 2 scattering phase shifts vs. Mandelstam
√
(s).
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Figure 2: Representative effective mass plot for I = 2: two units center of mass momentum, four opera-
tors consisting of pions (hydrogen-like spatial wave function of ψγ5ψ) with all possible lattice momentum
combinations up to three units of individual momenta. δt = 3 for two matrix subtractions. 185 sloppy con-
figurations are used with 7 of these are also calculated exactly. ’2xjk’ means we fit (to a constant) under a
jackknife.
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7. I = 0 (Preliminary)
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Figure 3: I = 0 scattering phase shifts vs. Mandelstam
√
(s).
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Figure 4: Representative effective mass plot for I = 0: center of mass frame, one stationary (hydrogen-like
spatial wave-function with gamma structure ψψ) operator, and two two-pion (hydrogen-like spatial wave
function with gamma structure ψγ5ψ) operators (one operator at rest, one with one unit of back-to-back
lattice momentum). δt = 1 for two matrix subtractions; t− t0 = 1. 185 sloppy configurations are used with
7 of these are also calculated exactly. ’2xjk’ means we fit (to a const+exp) under a jackknife.

8. Analysis

The above results are preliminary, but roughly represent what will likely be final values we
expect to publish soon. The summary plots (sections 6 and 7) display the p-value weighted averages
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(see section 5). For I = 2, good plateaus are observed, so GEVP energies are fit to a constant,
whereas for I = 0 and 1 the energies are fit to a constant plus exponential term to deal with the
obvious excited state contamination; (see section 3).

Compared to the Roy equation analysis (from M. Bruno; priv. comm.) we see good agreement
for I = 2 , reasonable agreement for I = 0, and only partial agreement for I = 1. In the latter case
our results lie significantly above the Roy analysis above the resonance region. Chiral perturbation
theory results from D. Murphy (priv. comm.) are also displayed and agree well with the lattice
results (and the Roy equation analysis) at low energies.

Two other physical point ππ scattering calculations are also nearing completion (the G-parity
and Distillation calculations mentioned above; see talks/proceedings of this conference of T. Wang,
A. Meyer, and C. Kelly).
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