Meron- and Semi-Vortex-Clusters as Physical Carriers of Topological Charge and Vorticity
W. Bietenholz, J.C. Pinto Barros*, S. Caspar, M. Hornung and U.J. Wiese
Pre-published on:
January 04, 2020
Published on:
August 27, 2020
Abstract
In O(N) non-linear σ -models on the lattice, the Wolff cluster algorithm is based on rewriting the functional integral in terms of mutually independent clusters. Through improved estimators, the clusters are directly related to physical observables. In the (N − 1)-d O(N) model (with an appropriately constrained action) the clusters carry an integer or half-integer topological charge. Clusters with topological charge ±1/2 are denoted as merons. Similarly, in the 2-d O(2) model the clusters carry pairs of semi-vortices and semi-anti-vortices (with vorticity ±1/2) at their boundary. Using improved estimators, meron- and semi-vortex-clusters provide analytic insight into the topological features of the dynamics. We show that the histograms of the cluster-size distributions scale in the continuum limit, with a fractal dimension D, which suggests that the clusters are physical objects. We demonstrate this property analytically for merons and non-merons in the 1-d O(2) model (where D = 1), and numerically for the 2-d O(2), 2-d O(3), and 3-d O(4) model, for which we observe fractal dimensions D < d. In the vicinity of a critical point, a scaling law relates D to a combination of critical exponents. In the 2-d O(3) model, meron- and multi-meron-clusters are responsible for a logarithmic ultraviolet divergence of the topological susceptibility.
DOI: https://doi.org/10.22323/1.363.0288
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.