Main Image
Volume 363 - 37th International Symposium on Lattice Field Theory (LATTICE2019) - Main session
Meron- and Semi-Vortex-Clusters as Physical Carriers of Topological Charge and Vorticity
W. Bietenholz, J.C. Pinto Barros,* S. Caspar, M. Hornung, U.J. Wiese
*corresponding author
Full text: pdf
Pre-published on: 2020 January 04
Published on:
Abstract
In O(N) non-linear σ -models on the lattice, the Wolff cluster algorithm is based on rewriting the functional integral in terms of mutually independent clusters. Through improved estimators, the clusters are directly related to physical observables. In the (N − 1)-d O(N) model (with an appropriately constrained action) the clusters carry an integer or half-integer topological charge. Clusters with topological charge ±1/2 are denoted as merons. Similarly, in the 2-d O(2) model the clusters carry pairs of semi-vortices and semi-anti-vortices (with vorticity ±1/2) at their boundary. Using improved estimators, meron- and semi-vortex-clusters provide analytic insight into the topological features of the dynamics. We show that the histograms of the cluster-size distributions scale in the continuum limit, with a fractal dimension D, which suggests that the clusters are physical objects. We demonstrate this property analytically for merons and non-merons in the 1-d O(2) model (where D = 1), and numerically for the 2-d O(2), 2-d O(3), and 3-d O(4) model, for which we observe fractal dimensions D < d. In the vicinity of a critical point, a scaling law relates D to a combination of critical exponents. In the 2-d O(3) model, meron- and multi-meron-clusters are responsible for a logarithmic ultraviolet divergence of the topological susceptibility.
Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.