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1. Introduction

Observation of a non-zero nucleon electric dipole moment (nEDM) would be direct evidence
for violation of CP(T)-symmetry. The Standard Model (SM) has a CP-violating phase in the CKM
matrix. However, there is at least one substantial motivation to search for CP violation beyond
the SM: the magnitude of the CP violation effect in CKM is insufficient to explain the observed
baryon asymmetry of the universe as required by one of the famous Sakharov’s conditions for
the universe’s matter origin. Currently the most sensitive probes for the CP-violating phenomena
are EDM searches in hadronic, atomic, and molecular systems. The best limits on EDMs come
from experiments on neutrons (ILL) [1] and 199Hg [2] which constrain the nucleon EDM (nEDM)
|dn| ≤ 2.6×10−26 [e cm]. This bound is ∼ 105 larger than the prediction ∼ 10−31 [e cm] from the
CP phase of the CKM matrix in the SM. Observation of non-zero nEDMs would be a discovery of
fundamental importance, and however, even a null result would make serious impact on cosmology
and high-energy theory. Violations of CP symmetry at the quark level are represented by a number
of effective quark and gluon operators. Among them, the only such renormalizable interaction is
the QCD "θ -term",

iSθ = iθQ = iθ ∑
x

q(x) , q(x) =
1

16π2 Tr
[
GµνG̃µν(x)

]
(1.1)

where Q is the topological charge and q(x) is the topological charge density operator. Assuming
that the θ -term is the only source of the CP violation, we have a strong constraint on the parameter
|θ |. 10−10. The problem of why θ is so small is known as the strong CP problem 1. The precision
of EDM measurements of nucleons and nuclei will increase in the future experiments using neutron
sources, which plan to improve neutron EDMs bounds by 1-2 orders of magnitude. However,
quantitative connection between magnitudes of EDMs and such CP violation operators at the quark-
gluon level is very limited and model-dependent (see Refs. [4], [5] for a recent review of the
EDM phenomenology). Therefore connecting the quark- and hadron-level effective interactions
that include CP violating sources is an urgent task for lattice QCD.

In this proceedings, we review recent progress on the lattice calculations of the nEDM induced
by the θ term. As for other CP-violating matrix elements that arise from the operators beyond the
SM, these are discussed in the plenary lecture [6] 2.

2. CP odd Form factor and parity mixing

In this section, we briefly review the methods for the lattice computations of the nEDM. The
θ -induced nEDMs have been calculated on a lattice from the CP-odd electric dipole form factor
(EDFF) F3(Q2) with the Q2 → 0 extrapolation of the nucleon matrix elements of the quark vector
current [8, 9, 10, 11, 12, 13, 14, 15, 16, 17], and from nucleon energy shifts in a uniform background
electric field [18, 19, 14]. The EDFF is defined as

〈p′,σ ′|Jµ |p,σ〉
��CP = ūp′,σ ′

[
F1(Q2)γµ +

(
F2(Q2)+ iF3(Q2)

) iσ µνqν

2MN

]
up,σ , (2.1)

1A dynamical solution to the strong CP problem is proposed in a parallel talk by G. Schierholz [3].
2See also [7] for a recent review.
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where Q2 = −q2 and q = p′− p, and F1 and F2 are the Dirac and Pauli form factors. The QCD
θ term is introduced either as a modification of the lattice CP-even QCD action with imaginary θ

term [10, 11] or as a Taylor expansion of nucleon correlation functions, SQCD → SQCD+ iSθ . In the
latter case the nucleon-current correlation functions in��CP QCD vacuum are modified as

〈N [q̄γ
µq] N̄〉

��CP =
1
Z

∫
DU Dψ̄DψN [q̄γ

µq] N̄e−S−iSθ

=CNJN̄ − iθ CQ
NJN̄ +O(θ 2) ,

(2.2)

where CNJN̄ = 〈N [q̄γµq] N̄〉 and CQ
NJN̄ = 〈N [q̄γµq] N̄ ∑x[q(x)]〉 are the nucleon-current correlation

functions evaluated in the CP-even QCD vacuum. To obtain the EDFF F3(Q2) in Eq. (2.1) we have
to calculate the nucleon two and three point functions

CQ
2pt(~p, t) = ∑

~y
e−i~p·~y〈N(~y, t)N̄(~0,0)∑

x
[q(x)]〉, (2.3)

CQ
3pt(t,~p; top,~q) = ∑

~y,~z
e−i~p·~y+~q·~z〈N(~y, t)Jµ(~z, top)N̄(~0,0)∑

x
[q(x)]〉. (2.4)

In general the nucleon ground states as well as their overlaps with the positive-parity nucleon
ground state are modified in��CP QCD vacuum as

〈0|N|p,σ〉
��CP = ZNeiαγ5up,σ = ZN ũp,σ , (2.5)

where ũp,σ is a spinor wave function for the nucleon state |p,σ〉
��CP and ZN is a normalization

constant. The spinor ũp,σ satisfies the following free Dirac equation with CP-violating γ5 mass

( /p−mNe−2iαγ5)ũp,σ = ( /p−mNe−2iαγ5)eiαγ5up,σ = 0, (2.6)

where up,σ is a wave function spinor in CP-even QCD vacuum. Thus when the CP violating effect
exists in the QCD vacuum, one should use the modified nucleon spinor ũp,σ in lattice calculations
which affects the kinematic coefficients. For example, ignoring excite states, the nucleon two-point
correlation function with CP violating operator can be represented as

CQ
2pt(~p, t) = |ZN |2

e−Ept

2Ep
∑
σ

ũp,σ ¯̃up,σ = |ZN |2
e−Ept

2Ep

(
mNe2iαγ5 − i /p

)
, (2.7)

where we use the completeness condition for the free Dirac spinor,

∑
σ

ũp,σ ¯̃up,σ = eiαγ5

(
∑
σ

up,σ ūp,σ

)
= mNe2iαγ5 − i /p. (2.8)

The modification also affects the nucleon matrix elements 〈p′,σ ′|Jµ |p,σ〉
��CP as

¯̃up′,σ ′

[
F̃1γ

µ +(F̃2 + iF̃3γ5)
iσ µνqν

2mN

]
ũp,σ = ūp′,σ ′

[
F̃1γ

µ + e2iαγ5(F̃2 + iF̃3γ5)
iσ µνqν

2mN

]
up,σ

= ūp′,σ ′

[
F1γ

µ +(F2 + iF3γ5)
iσ µνqν

2mN

]
up,σ .
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In the original lattice calculation [8], while the CP violation effect on the kinematic coefficient in
Eq. (2.8) have been correctly taken into account, the inadequate definition of these form factors of
F̃1,2,3 has been used prior to [14]. As a result, all previous lattice results has a spurious contributions
to the EDFF computed with F̃3 from the Pauli form factor F2 as

F̃3 = F3 −2αF2. (2.9)

Thus if the "Old" formula (F̃3) is used for extracting the nEDM d̃n = F̃3(0)/(2mN), there is a
correction from the spurious mixing, which becomes significant when α becomes large.

The inconsistency between "Old" and "New" formula can be directly and numerically con-
firmed by comparing with computing nEDM from the energy shift method. The uniform electric
field that preserves translation invariance and the (anti-) periodic boundary conditions on a lattice
was first introduced in [20] to study the nEDM, and also applied to CP-even quantities such as
electric polarizability and magnetic moments of the nucleon [21, 22]. The uniform background
electric field is analytically continued to an imaginary value, so that the nucleon energy shift due
to nEDM becomes imaginary. Expanding the two-point function up to the first order in θ we can
directly extract the nEDM contribution that is linear in t. For simplicity we only consider the neu-
tral particles, since the correlation function of charged particles is more complicated. To introduce
the background electric field we consider the following Euclidean U(1) vector potential

Ax, j = ni jΦi jxi, Ax,i|xi=Li−1 =−ni jΦi jLix j, (2.10)

where Φµν = 6π

Lµ Lν
is the quantum field flux on a plaquette (µν) and nµν is the corresponding

number of quanta. The (anti-) periodicity on a lattice in both space and time requires the Dirac
quantization conditions

QqΦµνLµLν = 2πnµν ,

(
Qu =

2
3
, Qd =−1

3

)
(2.11)

The electric field vector is then given as ~E = (n14Φ14,n24Φ24,n34Φ34). The corresponding effective
Dirac equation for nucleon field Ñ is given as(

/p− (κ̃ + iζ̃ γ5)
Fµν

2
σ µν

2mN
−mNe−2iαγ5

)
Ñ = 0, (2.12)

where κ̃ = F̃2(0) and ζ̃ = F̃3(0) are the effective anomalous magnetic and electric moments in the
basis of Ñ with γ5 mass. It is obvious that the ��CP phase eiαγ5 can be completely rotated away by
a field redefinition N = eiαγ5Ñ, where the two couplings also transform e2iα(κ̃ + iζ̃ ) = (κ + iζ ).
Considering an electric field in z-direction ~E = (0,0,Ez) in the rest frame pµ = (~0,Es), we obtain
an on-shell solution spinor uEz,s for the spin polarized along z-direction with s = ±, which has
a spin-dependent energy eigenvalue Es = mN − ζ

2mN
(sEz) +O(E2

z ). From the result we see that
the resulting energy shift is consistent with the EDFF obtained in the basis of N without γ5 mass,
and κ = F2(0) and ζ = F3(0) are the nucleon magnetic and electric dipole moment coefficients.
By taking the analytic continuation of the electric field Ez to the imaginary value we obtain the
energy shift of a nucleon on lattice as Ẽ± = mN ± δE, with δE = −ζ/(2mN)iEz. To extract the

3
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nucleon energy shift we calculate the following nucleon two point functions in the presence of the
background electric fields

CQ
2pt,~E

(~p, t) = ∑
~y

e−i~p·~y〈N(~y, t)|N̄(~0,0)∑
x
[q(x)]〉~E . (2.13)

Using the solution spinor uEz,s and ignoring excited states we can expand CQ
2pt,~E

(~p, t) as

CQ
2pt,~E

(~0, t) = |ZN |2 ∑
s=±

ũEz,s
¯̃uEz,s

e−Ẽst

2Ẽs

= |ZN |2
[

1+ γ4

2
(1−Σ

z
δEt)+ iα5γ5 +Σ

z κEz

2m2 γ5

]
e−mNt +O(δE2,E2

z ), (2.14)

where Σz =−iγxγy. Using the standard ratio method we define an “effective” energy shift ζ eff
n (t) =

2mNdn = −2mN
Ez

(R(t + 1)−R(t)), and R(t) is defined as a ratio of two-point functions with two
different spin projections

R(t) =
Tr[(TSz+ −TSz−)C��

CP
2pt,~E

(~0, t)]

2Tr[TpC��CP
2pt,~E

(~0, t)]
, (2.15)

where we use spin polarization projection operators TSz± =
1+γ4

2 (1±Σz), and Tp =(1+γ4). Thus the
nEDM in the energy shift method is independent from the parity mixing ambiguity, from which we
numerically verify the consistency with the “New” formula (F3). For more detail on the analyses,
see Ref. [14].

We show some nEDM results in comparison between the form factors and the energy shift
methods. Fig. 1 shows how the spurious mixing affects the result for the θ -EDM. As shown in the
figure, the magnitudes of F3(Q2) with "New" are smaller than the "Old" values. We also show the
result for nEDM ζ eff

n computed from the effective energy shift in Fig. 2, where we computed with
two values of flux quanta n = n34 =±1 and ±2. A plateau for the effective energy ζ eff

n at t = 4 ∼ 7
can be obtained in both electric fields of |n| = 1 and 2. Comparing the form factor method we
obtain a consistent result only if we use the “New” formula. This result is also consistent with
naively corrected data using the previously reported values prior to [14]. Since we obtain a small
but non-zero signal |dθ

n | . 0.1 e
2mN

at mπ = 330 MeV, we estimate an extrapolated value to the
physical point based on a naive scaling of the ChPT expectation dn ∼ mq ∼ m2

π , which suggests
that the signal becomes weaker as the quark mass is approaching to the physical point and we
would obtain a smaller value of |dθ

n (m
phys
π )| . 0.02 e

2mN
. From our findings in order to promote a

direct calculation of nEDM at the physical point, various noise reduction techniques that work in
particular for gluon operator are required in addition to a significant increase in statistics.

3. Noise reduction technique for θ -EDM

As explained in the previous section, θ -induced nEDM would be extremely challenging in
the physical point, because the topological charge fluctuation dominates the large statistical noise
growing with lattice volume V4 as δQ2 = 〈Q2〉 ∝ V4, while the signal becomes small. Since the

4
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Figure 1: Plateaus for the nucleon EDFF F3(Q2)

from QCD θ term for top = 8. The results with "Old"
include spurious mixing with the F2. Results are
shown for a lattice ensemble of domain wall fermion
configurations of 243 ×64 for mπ = 330 MeV.

0 2 4 6 8 10
t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

ζ
e
ff
(t

)

|n|=1

|n|=2

Figure 2: Effective nEDM ζ eff
n from QCD θ term.

Results are shown for a lattice ensemble of domain
wall fermion configurations of 243 ×64 for mπ = 330
MeV.

global topological charge is zero on average because our QCD action is CP-even, F3(Q2) is the
signal of the correlation between the gluon operator and the fermionic (nucleon) functions as shown
in Eq. (2.4). Thus it has been originally suggested that truncation of the topological charge sum at a
large distance from the nucleon position can reduce fluctuations of the nEDM [13] (also known as
a cluster decomposition of disconnected diagrams [23]), since contributions of Q at large distance
may be neglected in computing the nEDM, while its correlation has a large noise which is not
suppressed with space-time distance due to the global nature of the topological charge. To extend
this method, in Ref. [24] we consider a generalized reduced topological charge density which
separately restrict time and space to a cylindrical volume VQ,

Q̃(∆tQ,rQ) =
1

16π2 ∑
x∈VQ

Tr
[
Ĝµν

˜̂Gµν

]
x , (~x, t) ∈VQ :

{
|~x−~x0| ≤ rQ ,

t0 −∆tQ < t < t0 + tsep +∆tQ ,
(3.1)

where t0 and t0 + tsep are the positions of the nucleon source and sink. This setup is illustrated
in Fig. 3, where the three-point functions are inside entirely the region VQ and the truncation in
t-direction for Q̃ is symmetric with respect to the nucleon sources and sinks for both two- and
three-point functions. We also set ~x0 to the nucleon source position to further reduce the noise at
large distances. We should note that a spatial restriction may introduce another bias for nEDM. In
order to avoid such ambiguity, the convergence with rQ and ∆tQ in Eq. (3.1) must be verified at
each nucleon momenta, especially in computing the Q2 dependence of the EDFFs.

Figure 3: Truncated sampling of the topological
charge density (3.1) for reducing the noise in the CP-
odd nucleon correlation functions (2.3) and (2.4). The
correlation with the points outside VQ is expected to
be suppressed but gives a large noise.
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We use the lattice QCD ensemble of dynamical domain wall fermion with heavy pion mass
mπ = 330 MeV. We calculate 64 low-precision and 1 high-precision samples using the AMA sam-
pling method [25]. The topological charge density is calculated using the “5-loop-improved” field
strength Ĝµν [26] with the gradient flow (tg f = 8a2). The rQ and ∆tQ dependence of the mixing
angle α and the EDFF for the neutron (connected diagram only) are shown in Figs. 4 and 5, where
we observe error reduction for smaller values of rQ and ∆Q and convergence for rQ ≥ 16, ∆tQ ≥ 8 in
both α and F3(Q2). We have also performed a calculation using ensembles at the physical point on
483 ×96 lattice with 33,000 statistics. Unfortunately we have found no signal for neutron EDFFs
(See Fig. 6), and the results are consistent with zero with the statistical uncertainty. Our result of
signal-to-noise ratio ∼ 0.2 at mπ = 330 MeV indicates that the expected signal-to-noise ratio at the
physical point has to be improved by a factor of ∼10 which requires ×O(100) more statistics to
confirm the existence of the strong CP problem.
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Figure 4: Dependence of the spatial and temporal cuts (rQ, ∆tQ) in the reduced topological charge (3.1) on
the nucleon parity mixing angle α5.
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Figure 5: Neutron EDFF induced by θ -term and its dependence of the spatial and temporal cuts (rQ, ∆tQ)
at mπ = 330 MeV.

A systematic analysis of the truncation method based on spectrum decomposition is proposed
in Refs. [15, 16]. This study uses a truncation of the topological charge density operator summed
over spatial directions Q̄ defined as

Q̄(tQ) =
∫

d3xq(x, tQ), q(x, tQ) =
1

16π2 GG̃(x, tQ) (3.2)

where the topological charge density q(x, tQ) is again calculated using the gradient flow method.
To calculate the nucleon mixing angle, the following modified two-point function

∆C2pt(t, tQ) = 〈T{N(T )Q̄(tQ)N̄(0)}〉, (3.3)

is considered. The spectrum decomposition for ∆C2pt(t, tQ) reveals its tQ dependence and provide a
systematic way to estimate the truncation error. For example, in the case of 0 < tQ < t, its spectral
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Figure 6: Preliminary results for the proton and neutron EDFF induced by θ -term and its dependence of
the spatial and temporal cuts (rQ, ∆tQ) at mπ = 139 MeV [24].

decomposition has the form

∆C2pt(t, tQ) = 〈N(t)Q̄(tQ)N̄(0)〉 ∼ ∑
n,m

e−En(t−tQ)−EmtQ〈0|N|n〉〈n|Q̄|m〉〈m|N̄|0〉

∼ ∑
m 6=n

cosh(∆mmn(tQ − t/2)), (3.4)

where ∆mn = Em −En. Note that two states of n and m should have different intrinsic parities,
otherwise the contribution vanishes since the matrix element should be zero, e.g., 〈n|Q̄|n〉 = 0 in
CP-even QCD vacuum if n has even or odd parity. On the other hand, in the case of t < tQ, it has

∆C2pt(t, tQ) = 〈Q̄(tQ)N(t)N̄(0)〉 ∼ ∑
n,m

e−EntQ−Emt〈0|Q̄|n〉〈n|N|m〉〈m|N̄|0〉

∼ ∑
n′

e−En′ tQ , (3.5)

where the state n′ should be a P-odd state that couples to a nucleon state with a non-zero value of
the matrix element 〈0|Q̄|n′〉 6= 0. From the spectrum decomposition we see that the nucleon mixing
angle α is a mixing parameter between the ground state nucleon and CP-odd excited states. To
see the truncation artefacts, the authors of Refs. [15, 16] consider the partial summed two-point

correlation function CQ̄
2pt(ts) =

ts

∑
tQ=−ts

∆C2pt(t, tQ). From Eqs. (3.4) and (3.5) its asymptotic form

behaves like CQ̄
2pt(ts) = A+Be−Ets for ts & t, where the contribution for large ts is expected to be

exponentially suppressed. This is numerically checked as shown in the left panel of Fig. 7, where
a plateau is obtained for ts ∼ t and the contributions from ts > t seem to be below the statistical
fluctuation. Neglecting unnecessary noise from ts & t, an improvement of α up to a factor 2 is
obtained. The same spectrum decomposition can be applied to the modified nucleon three point
function ∆CQ̄

3pt(t, tQ, top) = 〈T{N(T )Jµ(top)Q̄(tQ)N̄(0)}〉, where a fit analysis using its asymptotic
form with the α-improvement yields a factor of 2∼ 3 times increases in the signal-to-noise ratio for
EDFF F3(Q2). The right panel of Fig. 7 shows a chiral (and continuum) extrapolation for dθ

n using

7
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six ensembles with mπ > 410 MeV for several lattice spacings. A ChPT fit ansatz dθ
n ∼ mq ∼ m2

π

is used to further constrain the nEDM towards the chiral limit, which yields dθ
n =−0.00152(71)θ

e fm at the physical point with ∼ 2 σ deviation from zero. This result is consistent with the
aforementioned naively scaled value |dθ

n (m
phys
π )|. 0.02 e

2mN
[24]. Their fitted data, however, are in

heavy pion mass region and do not clearly show the chiral behavior dθ
n ∝ m2

π , so that the fit results
seem to be less convincing. To avoid model dependence, more accurate results near the physical
point are needed.
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Figure 7: Results presented in Ref. [16]. (Left) The improved nucleon mixing angle α plotted against the
sum parameter ts. (Right) A chiral and continuum extraplation of nEDM dθ

n plotted as a function of mπ .
The bands are the fit results.

New results near the physical point (mπ = 130-310 MeV) are presented in a parallel talk by
Boram Yoon [17]. The topological charge is calculated using the O(a4)-improved field strength
[27] with the gradient flow on MILC HISQ ensembles with a = 0.06− 0.15 fm. This study also
uses the truncation method in t-direction. While the convergence properties in partial sum can be
seen in both two- and three- point functions, due to the slow convergence at the physical point no
significant improvement is observed. It is, however, remarkable that the number of measurements
is O(100k), which gives a statistically significant signal for F3(Q2) with non-zero Q2 near the
physical point (see the left panel of Fig. 8). It is also reported that a variance reduction technique
introduced in [28] has about 25% error reduction. In this calculation the excited state contamination
is removed by using the two-state fits with multiple source-sink separations for each momentum
Q2. The results for F3(Q2) at heavier mπ with non-zero Q2 are consistent with the previous lattice
results [24, 16]. The result from the chiral (interpolation) and continuum extrapolation fit for dθ

n

are also presented in the right panel of Fig. 8, which yields a non-zero signal of |dθ
n |= 0.011(6)θ e

fm at the physical point. While this result is also consistent with estimates from ChPT analysis and
the QCD sum rules [4], it is not sufficient to constrain the θ parameter. We also notice that even
though the values of dθ

n at finite a are all positive except for the data at mπ = 135 MeV, these values
in the continuum limit become negative, which may indicate a sizable discretization effect on dθ

n .
In addition, there is an increasing tendency of F3(Q2) towards Q2,m2

π → 0 but with larger error. A
leading order ChPT fit may not be suitable for dθ

n in the simulation mass region, and understanding
the Q2 dependence of F3(Q2) would be important to precisely determine dθ

n at the physical point.
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We have shown in this section that there are several ongoing studies of the θ -induced nEDM.
Even having O(100k) statistics with employing noise reduction techniques at the physical point,
it still is not sufficient to constrain the θ parameter due to the large fluctuation of the topological
charge density, which should become even worse when approaching to the continuum and larger
volume limit. There also are several systematic uncertainties due to finite lattice spacing and Q2 →
0 extrapolation in EDFF F3(Q2), which need to be further explored. Thus θ -induced EDM at the
physical point will be extremely challenging and will require more special techniques that work
well in particular for gluon operators. In the next section, we would like to propose a new approach
using a matrix element of the nucleon with background electric field. Since this approach is based
on the energy shift method, we can directly obtain dθ

n without Q2 extrapolation, which may be
potentially advantageous over the form factor method.
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Figure 8: Preliminary results presented in Ref. [17]. (Left) The Q2 dependence of F3(Q2)/(2mN). (Right)
A chiral and continuum extraplation of nEDM dθ

n plotted as a function of m2
π .

4. New approach based on the matrix element with the background electric field

The idea is to simply apply the truncation technique to the energy shift method in the presence
of the background electric field, in which we find that the energy shift δE in Eq. (2.14) is given
as a nucleon matrix element of the topological charge density operator Q̄ in Eq. (3.2). Throughout
the section, the state’s momenta are set to zero and arguments of ~p are suppressed. Performing the
spectrum decomposition of ∆C2pt(t, tQ) as in Eq. (3.4) but now in the presence of the background
electric field, we obtain the following result for t > tQ as

∆C2pt,~E(t, tQ) = 〈N(t)Q̄(tQ)N̄(0)〉~E
= ∑

n,m
e−En(t−tQ)−EmtQ〈0|N|n,~E〉〈n,~E|Q̄|m,~E〉〈m,~E|N̄|0〉

∼ |ZN+ |2e−mN+ t〈N+,~E|Q̄|N+,~E〉, (4.1)

where |N+,~E〉 is the ground state nucleon in the presence of the background electric field. We
should note that in contrast to Eq. (3.4), there is a leading order contribution from the ground
state nucleon given as a matrix element 〈N+,~E|Q̄|N+,~E〉. Again taking the partial summation of
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∆C2pt,~E(t, tQ) over sink-source separation t, we obtain

CQ̄
2pt,~E

(t) =
t

∑
tQ=0

∆C2pt,~E(t, tQ)∼ |ZN+ |2e−mN+ t(t〈N+,~E|Q̄|N+,~E〉), (4.2)

where the matrix element is given the coefficient of linear in t. Comparing Eq. (2.14) with Eq. (4.2),
we find that the matrix element should correspond to the energy shift

〈N+,~E|Q̄|N+,~E〉=− ζ

2mN
ū
[
~Σ ·~E

]
u+O(~E2). (4.3)

This formula is analogous to the leading order energy correction in the perturbation theory of
quantum mechanics, c.f., ∆En = 〈n|∆Ĥ|n〉 for Hamiltonian Ĥ = Ĥ0 +∆Ĥ. In this case we regard
the electric field as a perturbation in addition to the CP-odd Hamiltonian (θ -term), and also take
into account a leading order perturbation effect on the state |N+,~E〉. Even without θ -term, the
ground state |N+,~E〉 could mix with CP-odd states [29] due to the background electric field as

|N+,~E〉= |N+〉+ c~E ·~D|N−〉+ · · · , (4.4)

where |N+〉 is the parity-even ground state nucleon in (lattice) CP-even vacuum. The leading order
correction should come from a parity-odd nucleon |N−〉 with an overlap coefficients of c and the
electric field ~E and an expectation value of the dipole operator ~D [29]. Substituting Eq. (4.4) into
Eq. (4.3), we obtain

〈N+,~E|Q̄|N+,~E〉= ~E ·~D〈N+|Q̄|N−〉+(c.c.)+ · · · , (4.5)

where we note 〈N±|Q̄|N±〉 = 0 due to parity symmetry, since we consider the electric field as a
perturbation so that |N±〉 is defined in CP-even QCD vacuum. Thus the contribution of the matrix
element 〈N+|Q̄|N−〉 is exactly the same as the parity mixing effect that appears in calculation of α

in Eq. (3.4). In the perturbation theory point of view, the EDM is an interplay of the electric field
and the CP-odd operator both in the first order perturbation. Using the standard ratio method as in
Eq. (2.15) and the relation to the matrix element in Eq. (4.3), we obtain the modified energy shift
formula

RSz±(t, tQ) =
Tr[TSz±∆C2pt,~E(t, tQ)]

Tr[TpC2pt,~E(t)]
→∓ ζ

2mN
Ez, (t → ∞), (4.6)

From this formula, it is clear that we do not need to extend tQ outside the sink-source position,
since there is no other term that is proportional to t in tQ > t. In fact the contributions from tQ > t
should be excited state contaminations that should disappear in the limit t → ∞. Thus, without Q2

extrapolation, the EDFF F3(0) can be directly extracted from the ratio by dividing by the electric

field as |F3(0)|= lim
t→∞

2mN |RSz±(t, tQ)|
|Ez|

.

We show our preliminary results on the θ -induced nEDM from the matrix element approach.
Since we compute the matrix element with the electric fields along z-direction in both positive
and negative, we have four results for each component of ±Ez and projections TSz± (see Fig. 9).
Obviously these data are correlated with each other and differences between spin up (or positive
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Ez) and spin down (or negative Ez) reduce the error. Fig. 10 shows the gradient flow time tg f

dependence of F3(0) for each sink-source time separation t = T . As expected, the signal becomes
better as increasing the flow time, and the result for F3(0) becomes stable at tg f ≥ 4 and T ≥ 8.
We also study a possible higher order correction in ~E. Fig. 11 shows the comparison of two results
for F3(0) with different electric field strength with |n| = 1 and 2, where both results |n| = 1 and 2
are consistent with each other for T ≥ 8, This result indicates that O(~E2) corrections on F3(0) are
small. From the plateau at T = 9 with tg f = 8 we obtain F3(0)= 0.12(3) for the neutron at mπ = 330
MeV. Our result seems to be consistent with the previous result obtained in the form factor method
(see e.g., Fig. 8) while our value is only available at Q2 = 0 and not directly comparable with the
previous results.

0 2 4 6 8
t
Q

0

1

2

Sz+, E+

Sz+, E-

Sz-, E+

Sz-, E-

T=8, |n|=2

0 2 4 6 8
t
Q

0
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0.2
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Figure 9: Preliminary results of F3(0) from the matrix element approach. Results are obtained on a 243×64
lattice with mπ = 330 MeV. 4 different components (Left) and their linear combinations for obtaining better
signals (Right).

5. Summary

Lattice calculations of nEDM are important for interpreting CP-violation effects in EDM ex-
periments and cosmological observations. A number of groups are putting in the effort required
for computing nEDM at the physical point using the form factor method. The nEDM induced by
θ -term has a large statistical noise in its correlation to the topological charge density, which is not
suppressed at a large distance due to its global nature. To reduce the error several noise reduction
techniques using the truncation of (space and) time region of the topological charge density have
been employed. It is found that while the truncation reduces the error by a factor of 2 at a heavier
pion mass, due to its poor convergence no significant improvement is observed at the physical pion
mass. There also are several systematic uncertainties in F3(Q2). The uncertainties of the discretiza-
tion effect, Q2 → 0 extrapolation, and excited state contamination for F3(Q2) have not been well
understood, which seem to become significant near the physical point. To control the systematic
errors and to further improve the statistical signal, we have proposed a new approach using the ma-
trix element with background electric fields. This method only requires a local topological charge

11



P
o
S
(
L
A
T
T
I
C
E
2
0
1
9
)
2
9
0

Computing Nucleon Electric Dipole Moment from lattice QCD Hiroshi Ohki

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 1.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 2.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 4.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

�6 �4 �2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 8.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 1.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 2.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 4.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

�6 �4 �2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 8.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 1.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 2.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 4.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

�6 �4 �2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
tgf = 8.0 a2

T=5
T=6

T=7
T=8

T=9
T=10

Figure 10: Gradient flow time dependence of F3(0) for each sink-source time separation T . The horizontal
axis represents tQ −T/2. Results are obtained on a 243 × 64 lattice with mπ = 330 MeV and |n| = 2 (the
electric field quanta).
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Figure 11: Electric field dependence of F3(0) for |n|= 1 and 2 at a fixed gradient flow time. The horizontal
axis represents tQ −T/2. Results are obtained on a 243 ×64 lattice with mπ = 430 MeV.

density operator between sink and source positions, and thus can avoid the large topological noise
at a large distance. In addition, no Q2 extrapolation is required since the forward matrix element
is directly obtained from the energy shift. Our preliminary results have demonstrated that we can
achieve statistically-significant signal at heavier pion masses that are consistent with the previous
results. This method can in principle be applied to any��CP operators, in which the Weinberg’s three-
gluon operator especially is beneficial for this method, since there is no additional computation cost
for the gluonic operator. We need further investigations at the physical point.
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