PoS - Proceedings of Science
Volume 364 - European Physical Society Conference on High Energy Physics (EPS-HEP2019) - Astroparticle Physics and Gravitational Waves
Atmospheric neutrino spectrum reconstruction with JUNO
G. Settanta*, S. Mari, C. Martellini, P. Montini  on behalf of the JUNO collaboration
Full text: pdf
Pre-published on: October 12, 2020
Published on: November 12, 2020
The atmospheric neutrino flux represents a continuous source that can be exploited to infer properties about Cosmic Rays and neutrino oscillation physics. The JUNO observatory, a 20 kt liquid scintillator currently under construction in China, will be able to detect atmospheric neutrinos, given the large fiducial volume and the excellent energy resolution. The light produced in neutrino interactions will be collected by a double-system of photosensors: about 18.000 20" PMTs and about 25.000 3" PMTs. The rock overburden above the experimental hall is around 700 m and the experiment is expected to complete construction in 2021.
In this study, the JUNO performances in reconstructing the atmospheric neutrino spectrum have been evaluated. The different time evolution of scintillation light on the PMTs allows to discriminate the flavor of the primary neutrinos. To reconstruct the time pattern of events, the signals from 3" PMTs only have been used, because of the small time resolution. A probabilistic unfolding method has been used, in order to infer the primary neutrino energy spectrum by looking at the detector output. The simulated spectrum has been reconstructed between 100 MeV and 10 GeV, showing a great potential of the detector in the atmospheric low energy region. The uncertainties on the final flux, including both statistic and the systematic contributions, range between 10% and 25%, with the best performances obtained at the GeV.
DOI: https://doi.org/10.22323/1.364.0041
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.