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scalar dark matter with ZN symmetries. The scalar sector comprises the Standard Model
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density can be largely determined by semi-annihilations instead of usual annihilations,
which reduces the direct detection signal. We perform a thorough study of the parameter
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ture of potential minima, phase transitions, and possible enhancements of the stochastic
gravitational wave signal.
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1. Introduction

Dark matter is hypothetical matter that can account for several problems encountered
in astrophysics such as galaxy rotation curves, or galaxy-cluster collisions. Thanks to the
Planck mission, one knows that the energy content of the Universe consists of 26.8% of dark
matter [1]. Despite this significant proportion, one still does not know what dark matter
exactly is. So far, plenty dark matter models have been studied, putting constraints on
it. In 2012, Higgs boson, an elementary scalar particle, was discovered in the LHC [2, 3].
Therefore, dark matter might be composed of elementary scalar particles as well.

2. Motivations

The motivation to study such models is that for N ≥ 3, semi-annihilation processes
become possible. It especially leads to reduced direct detection signal. In addition, scalar
dark matter is responsible of richer phase-transition patterns and it is well-known that
first-order phase transitions generate gravitational waves [4–6]. The latter could be then
probed by future space-based gravitational-wave detectors such as LISA or BBO [7,8].

3. Model

Scalar dark matter one considers in this paper is invariant under the Z3 group. The
symmetry transformation for a field φ is φ→ ωXφ, with ω= e2πi/3 and X ∈ {0,1,2}. Given
that the most general scalar potential, which contains semi-annihilations terms, one can
construct is the following

V = µ2
1|H1|2 +λ1|H1|4 +µ2

2|H2|2 +λ2|H2|4 +µ2
S |S|2 +λS |S|4

+λS1|S|2|H1|2 +λS2|S|2|H2|2 +λ3|H1|2|H2|2 +λ4(H†1H2)(H†2H1)

+ µ
′′
S

2 (S3 +S†3) + λS12
2 (S2H†1H2 +S†2H†2H1) + µSH

2 (SH†2H1 +S†H†1H2) (3.1)

where H1 → H1 is the Standard-model Higgs doublet, H2 → e2πi/3H2 is an inert Higgs
doublet and S→ e2πi/3S is a complex scalar singlet [9].

The µ′′S and λS12 terms are responsible for semi-annihilation processes. The µSH term
in the potential (3.1) induces a mixing between the singlet S and the neutral (lower) part
of the inert doublet H2. Through a change of basis, one can express H2 and S in terms of
the mass eigenstates x1 and x2:

H2 =
(

−iH±

x1 sinθ+x2 cosθ

)
and S = x1 cosθ−x2 sinθ (3.2)

with θ the mixing angle.
Regarding the Standard model Higgs doublet, one writes it as usual in the unitary

gauge: H1 =
(

0
v+h

)
, with v ' 246 GeV, its vacuum expectation value and h the Higgs

boson. Without loss of generality, one considers the mass of x1 lower than the mass of x2,
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which implies that x1 is the dark matter candidate. Then, taking θ such that 0≤ θ ≤ 0.06
ensures that the dark-matter candidate x1 is dominantly singlet-like so that one does not
measure a too large direct detection rate [9].

4. Constraints

In this section, one reviews a series of constraints that are applied to the model described
in the previous section:

• unitarity: this constraint come from the unitarity of the scattering matrix. It results
in |Re ai0| ≤ 1/2, ∀i, where a0 is the zero order partial wave amplitude and the ai0 its
eigenvalues. Only quartic couplings are constrained from considering scattering in the
infinite energy limit, while the dimensionful parameters such as µ′′S are constrained
by the unitarity of finite energy scattering.

• perturbativity: following Lerner and McDonald paper [10], one obtains

|λ1|<
2π
3 , |λ2|< π, |λ3|< 4π, |λ4|< 4

√
2π, |λ3 +λ4|< 4π,

|λS |< π, |λS1|< 4π, |λS2|< 4π, |λS12|< 4π (4.1)

• vacuum stability: the potential (3.1) has to be bounded below, especially in the limit
of large field values, so that it presents a finite minimum. Only the quartic terms
are relevant in this limit, which means that the vacuum stability constraint uniquely
applies on the λi terms. By applying the procedure given in [11], one guarantees a
quartic potential that is bounded below.

• globality of the vacuum: one requires that the electroweak symmetry breaking vac-
uum (〈S〉= 〈H2〉= 0, with 〈 〉 representing the vacuum expectation value of a field)
to be the global minimum of the potential.

• dark-matter relic density: given Planck data, one knows that the dark-matter relic
density has to satisfy ΩDMh

2 = 0.12±0.001 [1].

• Higgs invisible branching ratio: in the situation where one has 2Mx1 ≤Mh' 125 GeV,
the Higgs boson can decay into dark-matter particles, which results in a invisible
decay. One defines the Higgs invisible branching ratio as

BRinv =
ΓZ3
h→x1x∗1

ΓZ3
h→x1x∗1

+ ΓSM
h

(4.2)

with ΓSM
h , the Higgs total decay width in the Standard Model.

One must have BRinv < 0.24 at 95% confidence level [12].

• electroweak precision tests: the constraint on the T parameter basically imposes
|MH± −Mx2 | . 120 GeV on the mass splitting of H± with the doublet-like neutral
scalar x2 [9].

• LEP limits: the Large Electron Positron collider imposes MH± > 80 GeV [13].

2



P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
0
8
9

Phase transitions and gravitational waves in models of ZN scalar dark matter Nico Benincasa

5. Dark-matter relic density

The main processes that contribute to dark-matter relic density, are due to three terms
in the potential (3.1). First, annihilation is governed by the λS1 term. For instance, one
can have two diagrams where in the first one, dark-matter particles annihilate into Higgs
bosons and in the second one they annihilate into Standard model particles.

As for semi-annihilation, when the mixing angle θ is small, it depends on µ′′S and/or λS12.
On the one hand, x1x

∗
1→ x1→hx∗1 contributes more for relatively light dark-matter masses,

whenMx1 >Mh. On the other hand, other semi-annihilation processes like x1x
∗
1→ hx2 can

dominate. This is the case when Mx2 +Mh < 2Mx1 . Semi-annihilation becomes important
when the value of µ′′S and/or λS12 is large. To conclude, coannihilation is allowed when
the difference between Mx1 , Mx2 and/or MH± is small. As an example of these new
semi-annihilation processes, one has x1x2→ x1Z, x1h or x1H

+→ x1W
+.

6. Results

Regarding the parameter space, we take Mx1 ∈ [10,1000] GeV and Mx2 ,MH± ∈ [Mx1 +
0.01,4000] GeV. Next, we consider µ′′S = 0 and |λS12| ∈ [0,2π]. We fit λS1 to the dark-
matter relic density. As for, λ2,λ3,λ4 and λS , they are free and are varied from 0 to π to
make the potential bounded from below (vacuum stability). We do not take the full range
allowed by unitarity and perturbativity but some more reasonable upper bound.1 Finally,
to calculate relic density and direct detection, we use micrOMEGAs [14] and to compute
gravitational waves we use CosmoTransitions [15] and the non-runaway scenario described
in [16].

6.1 Direct detection

We present the direct detection results in Fig. 1 where the colour code characterises
the fraction of semi-annihilation α, which is equal to 1 if there are only semi-annihilation
processes and is equal to 0 if there is no semi-annihilation. We see that scenarios with large
semi-annihilation lead to suppressed direct detection rate. Furthermore, we can observe
that several points with a low α yield a smaller direct detection rate. These points are due
to coannihilation processes. Indeed, if coannihilation is dominant, then annihilation (and
thus the direct detection cross section) has to be smaller to obtain the right relic density.
Next, we can see in the left part of the scatter plot that there is no point anymore below
Mx1 ' 55 GeV. This is explained by the Higgs invisible branching ration constraint. As a
final note, we see that with XENONnT [17], only a few point could escape this detector,
therefore the model could be nearly completely tested.

6.2 Gravitational wave

Fig. 2 shows gravitational wave signals. The signals we obtain only come from phase
transitions that also exist in the inert doublet model or two-Higgs doublet model. There is

1We take the maximal values at a fraction of the perturbativity bound and not right at its upper bound,
so that we do not hit the Landau pole of the scalar couplings at once.
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Figure 1: Dark-matter spin-independent direct detection cross section σSI as a function
of the dark-matter mass Mx1 . The colour code shows the fraction of semi-annihilation α.
The solid line is the exclusion limit for XENON1T at 90% C.L. [18], whereas the dashed
line is the projected exclusion limit for XENONnT.

no new contribution2 to the two aforementioned models due to the presence of the singlet
S, thereby there is no phase transition that would involve a phase with 〈H1〉, 〈H2〉 and 〈S〉
all non-zero. If it were the case, then the quartic semi-annihilation coupling λS12 would
also be involved. A possible explanation for this missing case is that a minimum involving
λS12 is generally deeper than minima with only 〈H1〉 6= 0, which means that the global
minimum would be with 〈S〉 6= 0 so it would break the Z3 symmetry of the model.
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Figure 2: Scatter plot of the peak power Ωh2 of gravitational waves signals as a function of
the frequency f . The two curves represent the sensitivity of LISA and BBO experiments.

2Of course, some transitions with the singlet are possible like (0,0,0) → (0,0,vS) → (v1,0,0), with
〈S〉 = vS and 〈H1〉 = v1, for instance.
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7. Conclusion

The semi-annihilation feature of the Z3 model is responsible for suppressed direct de-
tection cross section and first-order phase transitions can give a potentially detectable
stochastic gravitational wave signals.
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