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Identification of bottom and charm quarks is crucial for most physics analyses at the CMS Exper-
iment. Advancement and proliferation of deep learning techniques as well as hardware develop-
ments have facilitated their use in high energy physics and CMS is successfully employing them
to classify jets originating from bottom quarks with unprecedented performance. Furthermore,
the improvements have been sufficient to begin meaningfully identifying charm jets as well.
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1. Introduction - Jets at CMS

Identification of bottom and charm quarks at CMS [1] is important for most physics analyses,
either directly or as means of background rejection for analyses with leptonic final states. Quarks
themselves cannot exist freely. However, through the process of hadronization, they form more
stable particles with integer electric charge.

Bottom and charm quarks produce B and D hadrons respectively, which have a measurable
lifetime (flight distance) and mass. These hadrons undergo further fragmentation, creating particle
showers, which are reconstructed as jets within the CMS detector.

The jet reconstruction at CMS uses the anti-kT algorithm [2] with cone size (∆R) 0.4 for
regular jets (AK4) and 0.8 for so-called "fat jets" (AK8). The decay of a hadron forms a secondary
vertex (SV) and a set of tracks, displaced from the primary collision point (PV). The displacement is
characterized by the impact parameter (IP). Soft leptons can also be produced in the particle shower.
This provides three handles on flavour identification: secondary vertex information, displaced track
information, and soft lepton information.
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Figure 1: Illustration of decay with a secondary vertex with a reconstructed jet, showing various features of
interest [3].

2. Neural Networks and Deep Learning

Neural networks (NN) were used at CMS for b-tagging since the beginning of Run 2 (13TeV).

1. CSVv2 (Combined-SV-version2) is a shallow NN with SV and track inputs, hence combined.
Successfully deployed in many CMS 2016/2017 analyses.

2. cMVAv2 is a boosted decision tree (BDT) combining other classifiers based on soft leptons
and hadron lifetime with CSVv2.

3. DeepCSV is a multi-classifier dense NN of 5 fully connected layers of 100 nodes each,
trained with the same inputs as CSVv2. It provides 3 probability scores as an output for
bottom, charm and light flavour.
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Figure 2: Performance of b-tagging algorithms with the phase-1 CMS detector [4].

The DeepCSV classifier played an instrumental role in the observation of Higgs boson decay
to bottom quarks by the CMS experiment in 2018 [5] and it remains the standard in use by many
analyses.

3. Convolutional and Recurrent Layers

Dramatic improvement was achieved by incorporating deep learning advances from other
fields like image recognition (convolutional) and natural language processing (recurrent). The
DeepJet NN [6] uses 1D Convolutional and LSTM layers to build abstract features from low-level
information for three input collections:

1. Secondary vertices

2. Charged particles (tracks)

3. Neutral particles

Figure 3: DeepJet network architecture [6].

The outputs are combined with global jet features in several dense layers to give a final prob-
abilities for each jet flavor. Scale Factors (SF), adjusting for MC mismodeling are derived with
two independent methods in different topologies - di-lepton top quark pairs (Kin) and multi-jet
(LTSV) - for three working points [3]. These are labeled loose, medium, and tight, corresponding
to misidentification probabilities of 10%, 1% and 0.1% respectively.
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Figure 4: Performance of the DeepJet classifier with the phase-1 CMS detector [6] (Left) ROC curves are
overlaid with WPs, as well as the efficiencies of these WPs, after being adjusted by measured SFs. (Right)
Scale Factors measured for medium WP as a function of jet momentum.

4. Charm Identification

Identification of charm jets is inherently difficult due to their "intermediate" nature compared
to bottom and light jets as can be seen for example from the 2D IP

σ
distribution in Fig. 4 (right)

[3], which is one of the input features for both DeepCSV and DeepJet. Nevertheless, it is possible
to define new discriminators from the multi-classifier scores for identifying charm vs. light (CvL)
and charm vs. bottom (CvB) flavour jets.
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Figure 5: (Left) Performance of the DeepCSV classifier distinguishing charm jets from bottom and light
jets. (Right) 2D IP

σ
of the most displaced track for different jet flavours.

The performance of DeepCSV proves itself to be sufficient to drive a competitive improvement
in exclusion limit of the Higgs to charm branching ratio in the vector boson associated production
mode down to 37xSM expectation [7].
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Figure 6: 95% and 68% confidence level upper limits on µ for the V H(H → cc) process in the first CMS
search for Higgs to charm decay [7].

5. Boosted Topologies

Identification of quarks produced at high transverse momenta is difficult as it results in colli-
mated or overlapping decay products. For that reason, dedicated classifiers are used, taking into
account the specific topology. The double-b is a BDT trained to identify boosted resonance de-
cays into pairs of bottom quarks, using tracking and vertexing variables reconstructed along two
subjettiness axes [3]. The DeepDoubleX (BvL, CvL, CvB) [8] is a set of three dedicated train-
ings for distinguishing pairs of bottom, charm, and light quarks from each other. It improves upon
the double-b approach by combining the same jet level inputs with low-level information using a
similar NN structure as DeepJet for a major performance gain.
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Figure 7: (Left) Performance of the double-b and DeepDoubleX classifier distinguishing bottom from light
jets. (Right) Performance of the dedicated DeepDoubleX classifier distinguishing charm from light jets.
Performance of double-b and DeepDoubleX (BvL configuration) for the same is shown as a reference.
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