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Precision luminosity calibration is critical to determine fundamental parameters of the standard
model and to constrain or to discover beyond-the-standard-model phenomena at LHC. The lumi-
nosity determination at the LHC interaction point 5 with the CMS detector, using proton-proton
collisions at 13 and 5.02 TeV during Run 2 of the LHC (2015–2018), is reported. The absolute lu-
minosity scale is obtained using beam-separation ("van der Meer") scans. The dominant sources
of systematic uncertainty are related to the knowledge of the scale of the beam separation pro-
vided by LHC magnets and the factorisability between the spatial components of the proton bunch
density distributions in the transverse direction. When applying the van der Meer calibration to
the entire data-taking period, a substantial contribution to the total uncertainty in the integrated
luminosity originates from the measurement of the detector linearity and stability.
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1. Introduction

State of the art methods for measuring luminosity at hadron colliders makes use of the fact that
the rate of any interaction scales linearly with the instantaneous luminosity. As a consequence the
deposited energy or hit rate in selected detector modules can be used for luminosity determination.
These selected modules are henceforth referred to as luminometers. At the CMS [1] experiment of
LHC, five online (HFOC, HFET, PLT, BCM1F, and DT) and several offline luminometers (PCC,
VTX, and RAMSES) are used [2, 3]. Absolute luminosity is obtained following the calibration
of the luminometers using a van der Meer (vdM) method [4]. The resulting calibration constant
is called σvis. In this procedure several sources of systematic uncertainty need to be considered
which, in this paper, are introduced separately for the calibration and the integration in Sections 2
and 3, respectively.

2. Absolute luminosity calibration

The background noise of the detectors is determined by super-separating the beams to 6σ

distance in both x and y. The resulting rates are shown in Fig. 1 as measured by BCM1F. For
accurate vdM fits the beam separation is a crucial parameter which is influenced by several effects.
First the nominal beam position (position as set by the magnets) is calibrated using two different
length scale scan methods that compare the observed luminous region and the nominal positions. A
typical output is seen in Fig. 2. Then the separations are corrected for orbit drift (see Fig. 3). Finally
the separations are compensated for the beam-beam deflection due to electromagnetic forces. The
bunches not only deflect but exercise a focusing/defocusing effect on one another which is called
the dynamic-β effect. Both the deflection and the dynamic-β effect are calculated in simulation
and are handled by a correction on the separation and the rates respectively.

In the vdM method we assume factorisable bunch proton densities with respect to the x and
the y directions. The bias and uncertainty due to this assumption is evaluated using the beam-
imaging and the offset scan methods [6]. Beam currents are important quantities for normalising
the vdM scan results. They are affected by the presence of the ghost and satellite contents of the
beam which are also taken into account. After all corrections are applied the consistency of the
calibration constants derived from different bunches (Fig. 4) and scans are examined for a given
detector, and the cross detector stability in the vdM fill is evaluated by comparing the measured
luminosities by different detectors (Fig. 5).

3. Integration and stability

Luminometers age during data-taking periods due to the intense radiation. This results in a
constant loss of efficiency which is monitored using short vdM scans, so called emittance scans
[5], in the beginning and end of each fill. An example of the results is shown in Fig. 6. Based on
this a correction is assigned to each luminometer. The rates in standard physics data-taking periods
are much higher than during the vdM fills and hence the calibration needs to be extrapolated to
these conditions. This requires a study of the linearity of the detectors. Figure 7 shows the cali-
bration constant derived for PLT (in emittance scans) as a function of single bunch instantaneous
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Figure 1: Rates measured by the BCM1F detector
in the "super separation" scan. [2]
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Figure 2: Difference between reconstructed lumi-
nous region position and nominal beam position, as
a function of the latter. [2]
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DOROS and arcBPM Orbit Drifts in VdM Scan with Fill6868 (Take 1)

Figure 3: Orbit drift during the first part of the
vdM scan in 2018. The x drift is shown in the top
plot and the y in the bottom plot as measured by the
DOROS and the arc beam position monitors. [2]
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Figure 4: Visible cross section for the PCC for all
vdM scans, for the five bunch crossings with data
from the silicon pixel tracker available. [2]

luminosity (SBIL). We see that bunches leading the bunch train exhibit a different behaviour which
is taken into account for the extrapolation and the corresponding uncertainty. After both linearity
and efficiency corrections are applied and the two most stable detectors are chosen, their consis-
tency is tested by examining the ratio of the measured luminosity as seen in Fig. 8. Plotting the
ratio as a function of SBIL also reveals some residual relative nonlinearity. An example of the ratio
of two luminometers as a function of SBIL is shown for HFOC and PLT in Fig. 9. Both effects are
taken into account by assigning a corresponding uncertainty.

4. Summary

In this paper, I gave a brief overview of the sources of systematic uncertainty relevant to the
luminosity determination procedure at CMS. The steps were illustrated using 2018 data as in Ref.
[2]. Efforts are ongoing to improve and apply the presented techniques to all Run 2 (2015–2018)
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Figure 28: Left: Measured PLT visible cross section for all VdM scans, for the five bunch cross-
ings with pixel data available. The uncertainty shown is statistical. Right: The measured visible
cross section for each scan, together with the weighted average (red line), with only the back-
ground correction applied (top) and with all corrections applied (bottom).
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Figure 29: Instantaneous luminosity for the five independent luminometers during the VdM
scan fill, showing the general agreement between all five luminometers through all the scans.
The period during which CMS was off because of the alarm has been removed. The inset shows
a zoom in on one of the periods with stable luminosity, in which the slightly different absolute
scales of the different luminometers can be observed. The three gray shaded rectangles indicate
the periods used to calculate the total integrated luminosity for the cross-detector comparison.

8 Linearity and efficiency corrections from emittance scans911

An ideal luminometer would have a perfectly linear response as a function of the instantaneous912

luminosity, with a single calibration constant relating the two. In practice, some nonlinear ef-913

fects, as described in Section 2, affect any real luminometer, and various instrumental effects914

can cause changes in the efficiency (and hence calibration constant) over the course of the year.915

In 2015–16, testing the linearity and stability of a luminometer could only be done by compar-916

ison to a second reference luminometer, in which case it is not necessarily clear which lumi-917

nometer (or both) is the source of the observed behavior. However, in 2017–18, we can take918

advantage of emittance scan data in order to derive linearity and stability corrections using919

only data intrinsic to a single luminometer.920

Emittance scans have been historically used by the LHC to estimate beam size and calibrate921

Figure 5: Instantaneous luminosity for the five independent luminometers during the vdM scan fill, showing
the general agreement between all five luminometers. The inset shows a zoom in on one of the periods
with stable luminosity, in which the slightly different absolute scales of the different luminometers can
be observed. The three grey shaded rectangles indicate the periods used to calculate the total integrated
luminosity for the cross-detector comparison. [2]

data to achieve a smaller total uncertainty for the whole data set. Table 1 shows a summary of the
systematic uncertainties taken into account in 2018.

Systematic Correction (%) Uncertainty (%)

Normalization

Length scale −0.8 0.2
Orbit drift 0.2 0.1
x-y factorisability 0.0 2.0
Beam-beam deflection 1.5

0.2
Dynamic-β −0.5
Beam current calibration 2.3 0.2
Ghosts and satellites 0.4 0.1
Scan to scan variation — 0.3
Bunch to bunch variation — 0.1
Cross-detector consistency — 0.5
Background subtraction 0 to 0.8 0.1

Integration

Afterglow (HFOC) 0 to 4 0.1⊕0.4
Cross-detector stability — 0.6
Linearity — 1.1
CMS deadtime — <0.1
Total 2.5

Table 1: Summary of the sources of systematic uncertainty in the CMS luminosity measurement for√
s = 13 TeV proton-proton collisions in 2018. When applicable, the percentage correction is shown. [2]
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