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Beam factorisation in vdM scans at CMS Peter Major

1. Introduction

The CMS [1] experiment at LHC measures luminosity using several subdetectors (luminome-
ters) [2, 3]. The van der Meer (vdM) method [4] is employed to calibrate the luminometers and
hence obtain the absolute luminosity scale. This method assumes that the proton density of the
bunches factorise in the x and the y planes. In general this assumption holds only approximately
which introduces a bias to the measured luminosity. In this paper, I shortly introduce the current
methods used in CMS to gauge the size of the bias and derive a corresponding correction and
uncertainty.

2. Beam-imaging analysis

The beam-imaging scan [5] consists of two pairs of special vdM scans. During a given scan
one of the beams is at a fixed position while the other scans it in either the x or the y plane in 19
equidistant steps as seen in Fig.1. The scans are performed in both x and y and for both beams
stationary. During this procedure primary-vertex data are recorded gated on five bunch pairs. The
vertex data are then used to fit different models of the two-dimensional proton density functions
of the bunches. An example for the residuals ((data-fit)/uncertainty) is seen on Fig. 2. These
models are built as the sum of 2D Gaussian functions. Currently the most complex model used
has three components, where the third component is narrow with respect to the first two and has
a negative weight. The correction values are derived from simulated vdM scans. The bias of the
method is evaluated using simulated beam-imaging scan analyses with randomly generated bunch
density profiles (Fig.3). Figure 4 shows the compatibility of the derived corrections for the different
bunches and models in 2017.

3. Offset scan analysis

Offset scans are auxiliary measurements and are analysed together with a normal vdM scan.
These scans are performed the same way as vdM scans albeit the two beams are separated in the
nonscanning direction to a distance of 2.50. Under the assumption that the proton density of
the bunches does not change during the scans, the offset scans sample the tails of the beam-beam
convolution function (Fig.5). The data representing a sampling of this convolution function are then
fit with models built as the sum of up to two 2D Gaussian functions with independent correlation
parameters. The fit and the residuals are seen in Fig. 6. Using this method, we observed a change
in the correlation parameter of the beam during a single fill in 2018 [2]. The correction values are
derived using simulated vdM scans.

4. Luminous region analysis

For bunch crossings where primary vertex data is available this method can utilise beam-
imaging, vdM, and a combination of offset and vdM scans as well. At each beam separation
value the density of the primary vertices is fitted with a three-dimensional Gaussian function. The
obtained fit parameters, for example, the luminous region centres and widths, and the total rate of
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Figure 1: A schematic of one of the four stages of Figure 2: Fit residuals for the best-fit model in

a beam-imaging scan. 2015 using the beam-imaging analysis. [6]
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Figure 4: Comparison of vdM bias obtained with
Figure 3: Validation of the beam-imaging analysis different fit models in the beam-imaging analysis in
using toy models. [6] 2017. [6]

one of the luminometers is used to fit the proton density of the bunches. Some of these observables
are shown in Figs. 8—11. The density models are built as the sum of 3D Gaussian functions all
of which may have a positive or negative weight however the density function is required to be
positive at each point in space. The correction values are derived using simulated vdM scans,
while the bias and uncertainty of the method is estimated using simulated analyses with randomly
generated bunch density functions.

5. Summary

In this paper, I briefly introduced the analysis techniques used in CMS to obtain a more pre-
cise luminosity measurement and to better understand the systematic uncertainty associated to the
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Figure 5: Normalized rates as the function of the
beam separations in the x—y plane. The red and the
blue points indicate the vdM and the offset data,
respectively. [6]
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Figure 6: The results of the fit on the vdM and
offset data using different models and the residu-
als. SG and DG stands for 2D single- and double-
Gaussian functions, respectively. [6]
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Figure 7: The change of the correlation parameter over the course of a 12 hour scan in 2018 as observed

using offset scans. [6]

factorisability of the bunch proton densities in the x and y directions.
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Figure 8: Normalized rates in the x scan. Data in
red and fitted model in blue. [6]
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Figure 10: The x width of the luminous region in
the x scan. Data in red and fitted model in blue. [6]

Fill 4954, (2016, 13 TeV)

o o
= oy
=) a

x coordinate of beamspot centre [mm]
4
o
a

CMS Preliminary { Data
Scan #1X, BCID 2063 it
Model: g1 Lgo L g3

T

0.60
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
45
0
T
3 30
@
2 15
(3
2
E o0 *
5
-15
~0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

separation [mm]

Figure 9: The x coordinate of the luminous region
center in the x scan. Data in red and fitted model in
blue. [6]
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Figure 11: The correlation parameter of the lumi-
nous region in the x scan. Data in red and fitted
model in blue. [6]
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