
P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
3
4
5

Measurement of Higgs boson couplings and
differential distributions at CMS

Matthias Schröder∗†
Institute of Experimental Particle Physics, Karlsruhe Institute of Technology (KIT)
E-mail: matthias.schroeder@kit.edu

Precise measurements of the Higgs boson couplings and cross sections provide a crucial probe
of the consistency of the standard model and of hypothetical new physics effects. In this article,
latest results on the Higgs boson couplings from the combination of multiple channels as well as
most recent measurements of Higgs boson differential distributions by the CMS collaboration are
reviewed.

European Physical Society Conference on High Energy Physics - EPS-HEP2019 -
10-17 July, 2019
Ghent, Belgium

∗Speaker.
†On behalf of the CMS Collaboration

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:matthias.schroeder@kit.edu


P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
3
4
5

Higgs coupling and differential measurements at CMS Matthias Schröder

1. Introduction

A precise measurement of the properties of the Higgs boson [1, 2, 3] is of paramount interest to
scrutinise the standard model (SM) nature of the Higgs sector or discover new physics beyond the
SM. Crucial information is obtained from investigation of the Higgs boson couplings, which can be
extracted from direct measurements in individual channels or, indirectly, from the combination of
measurements in multiple channels. While the coupling measurements are subject to various model
assumptions, differential measurements provide a powerful, largely model-independent probe of
the Higgs sector. In several channels, measurements are performed in the kinematic phase-space re-
gions defined within the simplified template cross section (STXS) approach; in the high-resolution
H→ ZZ∗→ 4l and H→ γγ channels, also fully differential cross section measurements in various
observables are possible.

In this article, latest measurements of the Higgs boson couplings and differential distributions
by the CMS collaboration [4] are reviewed. The results have been obtained with up to 137.1 fb−1

of proton-proton collision data collected during the LHC Run 2 at 13 TeV centre-of-mass energy.

2. Signal-Strength and Coupling Measurements

Each combination of production and decay channel of the Higgs boson provides information
on its signal strength modifier µ , the measured product of cross section and branching ratio rela-
tive to the SM expectation. Combining various Higgs boson measurements with 35.9 fb−1 of data
collected in 2016, a global value of µ = 1.17±0.10 is obtained [5]. The compatibility with the SM
expectation of 1, expressed as a p value, is p = 6.3%.

A different parametrisation, which allows more freedom, introduces coupling modifiers κi,
which modify the strength of the Higgs boson coupling to particle i. This provides sensitivity also
to the relative sign of the couplings due to the interference between different processes contributing
to the same final state. Loop-induced processes, for example Higgs boson production via the
gluon-gluon fusion (ggH) mode or the decay into two photons, can be either resolved, assuming
contributions from SM particles only, or effective coupling modifiers to the gluon and the photon
can be introduced, which allows modelling potential new particles in the loops. Furthermore,
potential decays into new particles can be considered by allowing non-SM contributions to the
total Higgs boson width; in this case, degeneracies in the system are controlled by imposing the
coupling to vector bosons to be |κV| ≤ 1. Using the 2016 data, the coupling modifiers to vector
bosons and third-generation fermions can be determined with a precision of 10–20 %, and they are
found to be consistent with the SM expectation [5].

These global, indirect interpretations are complemented by direct, less model-dependent mea-
surements of each coupling strength individually. While the couplings to vector bosons have al-
ready been observed with 5σ significance during LHC Run 1, the data collected during Run 2
allows for the first time a direct measurement of also the Higgs-fermion couplings: the couplings
to the third-generation fermions have been observed in 2017 and 2018 [6, 7, 8] in agreement with
the SM expectation, and the couplings to muons [9] and charm quarks [10] start to be within the
experimental reach.
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3. Simplified Template Cross Section Measurements

The interpretation in terms of coupling modifiers is still rather model-dependent since SM
Higgs boson kinematics are assumed and only the coupling strength is scaled. The STXS ap-
proach [11] is a first step towards differential, more model-independent measurements. Here, fidu-
cial cross section measurements are performed in many exclusive phase-space regions (“bins”),
defined by the Higgs boson kinematics and additional jet activity, separately per Higgs boson
production channel. A common bin definition, which reflects the experimental sensitivity and
theoretical relevance, is used across the experimental and theory communities, thus facilitating a
straight-forward combination across channels and experiments.

The CMS collaboration has published new STXS measurements in the H→ γγ and H→ ττ

channels [12, 13], obtained with 77.4 fb−1 of data collected in 2016 and 2017, and in the H→
ZZ∗→ 4l, l = e,µ , channel [14], using the full Run 2 dataset corresponding to 137.1 fb−1.

The analyses of the H→ γγ and H→ 4l channels benefit from the excellent photon and lepton
energy resolution, which allow reconstructing the signal as a narrow peak in the invariant di-photon
and four-lepton mass spectra, respectively. The smaller branching ratio into 4l is compensated by
the larger signal-to-background ratio compared to the γγ final state, leading to similar sensitivity
in both channels. The high resolution allows cross section measurements in finely granular kine-
matic regions, where the event categorisation based on reconstructed objects matches closely the
corresponding STXS bins with minimal migration.

In the H→ γγ channel, up to 13 bins are considered, Fig. 1 (left), which target the ggH and
vector-boson fusion (VBF) production modes following the STXS stage 1 binning scheme. The
sensitivity in the H→ 4l channel benefits from the larger analysed dataset of the full Run 2, and
cross sections have been measured in up to 22 bins of the STXS stage 1.1 scheme, targeting all
primary Higgs boson production modes, Fig. 1 (right).
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Figure 1: Ratios between the measured Higgs-boson cross sections and the SM predictions in different
STXS bins in the H→ γγ [12] (left) and H→ 4l [14] (right) channels. The ratios are constrained to be non-
negative. The bands around the vertical lines show the theoretical uncertainty on the SM predictions. The
ggH parameters include bbH components, while the qqH parameters include the hadronic VH contribution.
In the H→ γγ channel (left), other production modes are constrained to the SM prediction.
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In the H→ ττ channel, four final states of the di-τ system are considered: eµ , eτhad, µτhad,
and τhadτhad. In order to compensate the worse resolution and signal-to-background ratio, a multi-
classification neural-network is used, which combines the information provided by many different
reconstructed variables. Based on the network output, the events are categorised into various back-
ground and two signal regions that target ggH and VBF production and reach categorisation effi-
ciencies of up to 70 % for VBF. In each signal category, the network output distribution provides
the final discrimination between the signal and the background processes, which are determined
almost entirely using data-driven methods, Fig. 2 (left). Cross sections have been measured in up
to nine STXS bins of the stage 1.1 scheme, Fig. 2 (right).

In all three channels, the results are found to be compatible with the SM expectation.
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Figure 2: Neural-network output distribution in the VBF category for events in the µτhad final state (left).
The stacked histograms show the expected background and the lines the signal contributions after the fit to
data. Ratios between the measured Higgs boson cross sections and the SM prediction for inclusive ggH and
VBF production and in nine STXS bins (right). The bands around the vertical lines show the theoretical
uncertainty on the SM predictions. [13]

4. Fiducial Cross Section Measurements

Beyond the STXS approach, differential cross sections in specific observables provide highly
model-independent measurements and are a powerful probe of potential new physics effects. The
CMS collaboration has performed differential cross section measurements mainly in the high-
resolution H→ 4l and H→ γγ channels. The cross sections are measured in fiducial phase-space
regions that match closely the experimental selection, and the results are corrected to particle level
via unfolding.

New results in the H→ 4l channel have been obtained with the full Run 2 dataset correspond-
ing to 137.1 fb−1 [14]. Previous results in the H→ 4l and the H→ γγ channels [15, 16], obtained
with the 35.9 fb−1 of 2016 data, have been combined [17], increasing the precision by up to 30 %
compared to the individual measurements. At large Higgs boson pT, the precision of the combined
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result has been improved further by also taking into account results in the H→ bb channel [18]. For
the combination, the fiducial cross section measurements in each channel have been extrapolated
to the full phase-space.

Cross sections have been measured as a function of various kinematic quantities of the Higgs
boson and the associated jets in the event; several examples are shown in Fig. 3. The cross section
as a function of the Higgs boson pT (top row) probes the modelling of the dominant ggH production
mode and provides sensitivity to potential new particles contributing to the loop. The shape of the
pT spectrum also depends on the Higgs boson couplings, and the measurement has been used to
derive constraints on various couplings, among them those that are not-yet accessible directly, such
as κc [17]. The Higgs boson rapidity distribution (middle row) probes, for example, the parton
distributions inside the proton, while the jet multiplicity (bottom row) is sensitive to the modelling
of QCD radiation as well as the relative contributions of different Higgs boson production modes.

The presented measurements achieve a precision of typically 20–30 %, which is limited by the
statistical uncertainty. The results are compatible with SM predictions computed at next-to-leading
(NLO) and next-to-next-to-leading (NNLO) order perturbation theory [19, 20, 21, 22, 23, 24].

In the H→ γγ channel, even double-differential cross section measurements have performed
with the 2016 data, for example as a function of the Higgs boson pT and the jet multiplicity [16].
The results are consistent with the SM expectation, but the precision is still limited by sizeable
statistical uncertainties of 50–100 % or more, and significant improvements can be expected with
the analysis of the full Run 2 dataset.

5. Summary

The CMS collaboration has performed a rich variety of Higgs boson coupling and differential
measurements with the LHC Run 2 dataset. From a combined interpretation of various production
and decay channels, the Higgs boson couplings to vector bosons and to third-generation fermions
can be extracted at 10–20 % precision. New results in the H→ 4l, H→ γγ , and H→ ττ channels
provide cross section measurements in finely granular kinematic regions defined within the STXS
approach. Furthermore, in the high-resolution channels H→ 4l and H→ γγ , differential cross sec-
tion measurements in various Higgs boson kinematic and event observables achieve 20–30 % pre-
cision, allowing an even more stringent test of the SM and providing a largely model-independent
probe of possible new physics.
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