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We develop the approach to the problem of neutrino oscillations in a magnetic field introduced
in [1] and extend it to the case of three neutrino generations. The theoretical framework suitable
for computation of the Dirac neutrino spin, flavour and spin-flavour oscillations probabilities in
a magnetic field is given. It is shown that there is an entanglement between neutrino flavour and
spin oscillations and in the general case it is not possible to consider these two types of neutrino
oscillations separately. The closed analytic expressions for the probabilities of oscillations are ob-
tained accounting for the normal and inverted hierarchies and the possible effect of CP violation.
In particular, it is shown that the probabilities of the conversions without neutrino flavor change,
i.e. νL

e → νL
e and νL

e → νR
e , do not exhibit the dependence on the CP phase, while the other neu-

trino conversions are affected by the CP phase. In general, the neutrino oscillation probabilities
exhibit quite a complicated interplay of oscillations on the magnetic µν B and vacuum frequencies.
The obtained results are of interest in applications to neutrino oscillations under the influence of
extreme astrophysical environments, for example peculiar to magnetars and supernovas, as well
as in studying neutrino propagation in interstellar magnetic fields.
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1. Neutrino stationary states in a magnetic field

To describe neutrino oscillations in an external magnetic field, we use the approach based on
Dirac equation stationary solutions. Here we assume that neutrino is a Dirac particle, and also
possesses only diagonal magnetic moments. Then the stationary Dirac equations for each of the
mass states are decoupled:

(γµ pµ −mi−µiΣΣΣB)νs
i (p) = 0, (1.1)

where µi are the neutrino magnetic moments, i = 1,2,3 and s =±1 is a spin number.
The above equation can be rewritten in the following form

Ĥiν
s
i = Eν

s
i , (1.2)

where the Hamiltonian is
Ĥi = γ0γγγ ppp+miγ0 +µiγ0ΣΣΣB. (1.3)

In order to classify the stationary solutions of eq. 1.1, we utilize the following spin operator

Ŝi =
mi√

m2
i B2 + p2B2

⊥

[
ΣΣΣB− i

mi
γ0γ5[ΣΣΣ× ppp]B

]
. (1.4)

It is easy to show that the spin operator commutes with the Hamiltonian 1.3, and its eigenvalues
are ±1. Thus, we can use this operator to classify the stationary solutions:

Ŝi |νs
i 〉= s |νs

i 〉 ,s =±1, (1.5)

〈νs
i |νs′

k 〉= δikδss′ . (1.6)

For the neutrino energy spectrum in a magnetic field we have

Es
i =

√
m2

i + p2 +µi
2B2 +2µis

√
m2

i B2 + p2B2
⊥, (1.7)

This expression can be simplified if one accounts for the relativistic neutrino energies (p�m)
and also for realistic values of the neutrino magnetic moments and strengths of magnetic fields
(p� µB). In this case we have

Es
i ≈ p+

m2
i

2p
+

µ2
i B2

2p
+µisB⊥. (1.8)

2. Neutrino oscillations in a magnetic field probabilities

In the most general form, neutrino oscillations probabilities can be represented in the following
form

P(νh
α → ν

h′
β
) =

∣∣∣〈νh′
β
(0)|νh

α(t)〉
∣∣∣2 = ∣∣∣∑

i,k
U∗

β iUαi 〈νh′
i (0)|νh

i (t)〉
∣∣∣2, (2.1)

where Uik is the PMNS-matrix, i,k = {1,2,3}, α,β = {e,µ,τ} are flavours and h,h′ = ±1 are
helicities. Thus, the amplitudes 〈νh′

i (0)|νh
i (t)〉 are the quantities of interest for us. Using quite the
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same approach based on the eigendecomposition as was implemented in [1], the amplitudes can be
computed as follows

〈νh′
i (t)|νh

i (0)〉= ∑
s

Ch′h
is e−iEs

i t , (2.2)

where the decomposition coefficients are

Ch′h
is = 〈νh′

i | P̂s
i |νh

i 〉 , (2.3)

and the projection operators were introduced

P̂±i = |ν±i 〉〈ν
±
i |=

1± Ŝi

2
. (2.4)

The oscillations probabilities can be finally written as

P(νh
α → ν

h′
β
) =

∣∣∣∑
s

∑
i

U∗
β iUαiCh′h

is e−iEs
i t
∣∣∣2, (2.5)

or in expanded form

P(νh
α → ν

h′
β
) = δαβ δhh′−4 ∑

{i, j,s,σ}
Re([Ahh′

αβ
]i, j,s,σ )sin2

(Es
i −Eσ

j

2

)
t

+ 2 ∑
{i, j,s,σ}

Im([Ahh′
αβ

]i, j,s,σ )sin
(
Es

i −Eσ
j
)

t, (2.6)

where the amplitude coefficients were introduced

[Ahh′
αβ

]i, j,s,σ =U∗
β iUαiUβ jU

∗
α jC

h′h
is

(
Ch′h

jσ

)∗
, (2.7)

and

∑
{i, j,s,σ}

= ∑
i> j;s,σ

+ ∑
s>σ ;i= j

. (2.8)

As we can see, the probabilities of neutrino flavour, spin and spin-flavour oscillations in gen-
eral case exhibit quite a complicated interplay of oscillations on different frequencies, that depend
on both magnetic µiB⊥ and vacuum frequencies ∆m2

ik
4p . The same phenomenon in the two-flavour

case was considered in [1, 2]. Throughout the derivation of the final expression 2.6, we did not
make any assumptions concerning the particular form of the mixing matrix U , except it being
unitary. Thus, the general expression 2.6 can be used to calculate explicit expressions for the prob-
abilities of neutrino flavour, spin and spin-flavour oscillation in a magnetic field in the three-flavour
case. It is easy to show that the two-flavour analytical expressions obtained in [1] can be retrieved
from 2.6 by setting the mixing angles θ13 = θ23 = 0, i.e. decoupling ντ from νe and νµ . Here we
use the standard parametrization of the mixing matrix

U =

1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 , (2.9)
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where δ is the CP-violation phase for Dirac neutrinos. To describe antineutrino oscillations, we
must replace U with U∗.

Within the three-flavour case, it becomes possible to investigate the way non-zero Dirac CP-
phase affects the probabilities of neutrino oscillations in an external magnetic field. Using the
general expression 2.6, it is possible to examine some features interesting analytically. For instance,
it is easy to show that

P(νL
e → ν

R
e ) = P(νL

e → νR
e ), (2.10)

i.e. the survival probability of an electron left neutrino does not depend on the value of the CP-
phase.

Moreover,

∑
α

P(νL
e → ν

R
α) = ∑

α

P(νL
e → νR

α) (2.11)

for α = e,µ,τ . We conclude, that CP-violation cannot influence the total observed flux of right
sterile neutrinos. However, the probabilities of conversions to νR

µ and νR
τ exhibit dependence on

the CP-phase.

In general, it is quite hard to deal with analytical expressions due to their complicatedness.
From now on we calculate 2.6 numerically.

Probabilities of neutrino flavour oscillations in a magnetic field B = 1011G for the cases δ = 0
and δ = π

2 is shown in Fig.1. Magnetic fields of such strength can be achieved inside astrophysical
object, for example magnetars and supernovas. We also supposed that µ1 = µ2 = 10−12µB, which is
consistent with the experimental upperbounds on neutrino magnetic moments, and neutrino energy
is p = 1 MeV.

Figure 1: Probabilities of neutrino oscillations in a magnetic field B = 1011G for the cases δ = 0 and δ = π

2 .

Clearly, the electron left neutrino survival probability remains unaffected by the value of the
CP-phase, as it was mentioned above. Meanwhile, the probabilities of oscillations to left muon
neutrino and left tau neutrino has different phases.
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3. Conclusion

We have generalized the approach to the problem of neutrino oscillation in an external mag-
netic field, developed in [1], for the case of three neutrino flavours. The obtained expressions can
be reduced to those known before by setting θ13 = θ23 = 0. The effect of non-zero CP-phase is
examined. It is shown that only P(νL

e → νL
µ) and P(νL

e → νL
τ ) exhibit dependence on δ . Using our

approach, it is also possible to investigate the mass hierarchy effect on the phenomenon of neutrino
oscillations in a magnetic field, but this is beyond the scope of the present paper. The obtained
results are of interest in applications to neutrino oscillations under the influence of extreme astro-
physical environments, for example peculiar to magnetars and supernovas, as well as in studying
neutrino propagation in interstellar magnetic fields.
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