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1. Introduction and theoretical framework

Extractions of the strong coupling, αs, at low energies (∼ 2 GeV) provide one of the most
stringent tests of asymptotic freedom as predicted by the QCD β function, which at present is
known to five loops [1]. These determinations also benefit from a reduction in the relative error
once the coupling is evolved to higher energies due to the logarithmic scale dependence, and can
therefore be competitive — provided that the non-perturbative contributions are under control. For
many years, the main extraction of αs at low energies was that from the QCD analysis of inclusive
τ → hadrons+ντ decays [2, 3, 4, 5, 6].1

Although a competitive extraction of αs can be achieved from hadronic τ-decay data, non-
perturbative contributions, albeit small compared to the perturbative corrections, cannot be ne-
glected. In fact, the treatment of the non-perturbative contributions is still one of the main sources
of theoretical uncertainties. The two most recent analyses disagree on how this contribution should
be treated, which leads to a certain tension between their results. Concrete evidence [9] supports the
notion that the analysis of Ref. [6] underestimates this error, but it remains true that the understand-
ing of non-perturbative corrections in τ decays could be improved with higher-precision data sets,
which are unlikely to be available any time soon. A second source of theoretical error stems from
the renormalisation-scale setting. A strict fixed order analysis, known as Fixed Order Perturbation
Theory (FOPT), leads to smaller values of αs while the resummation of certain classes of contri-
butions to all orders using the QCD beta fuction, known as Contour Improved Perturbation Theory
(CIPT) [10], leads to larger αs values. In this respect, our understanding of the perturbative series
favours the use of the fixed order expansion [11, 12] but, as in the case of non-perturbative contri-
butions, it would be desirable to reduce the theoretical uncertainty that arises from the perturbative
series itself.

Non-perturbative contributions as well as the differences related to renormalisation-scale set-
ting should both be smaller at higher energies. The τ-decay data are, of course, kinematically
limited by the τ mass. Therefore, a natural way of circumventing this kinematical limitation and
attack both issues at the same time is the use of data for the R-ratio defined as

R(s) =
3s

4πα2 σ(e+e−→ hadrons(γ))≈ σ(e+e−→ hadrons(γ))
σ(e+e−→ µ+µ−)

, (1.1)

from which one can extract the imaginary part of the electromagnetic (EM) current-current corre-
lator, ΠEM(s), through the optical theorem

ImΠEM(s) = πρEM(s) =
1

12π
R(s), (1.2)

where ρEM(s) is the EM spectral function. The γ within parentheses in Eq. (1.1) indicates that the
hadronic final states are inclusive of final-state radiation. Here we summarise our recent work [13]
in which we employ a recent compilation of R data [14] below the charm threshold in order to
extract the strong coupling with n f = 3.

In order to fully profit from the data for R(s) we employ finite-energy sum rules FESRs — the
same technique used in the analysis of hadronic τ decay data. Since the EM correlator ΠEM(z) is

1With lattice data one can also obtain information about αs at similar energy scales from the cc̄ pseudo-scalar
correlator as well as from the the qq̄ static potential [7, 8].
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analytic everywhere in the complex plane except along the real axis, one can relate integrals over
ImΠEM(s+ i0) to integrals over ΠEM(z) along a closed contour in the complex plane as

I(w)(s0)≡
1

12π2s0

∫ s0

0
dsw

(
s
s0

)
R(s) =− 1

2πi s0

∮
|z|=s0

dzw
(

z
s0

)
ΠEM(z) , (1.3)

where the weight function w(y) must be analytic and we used Eq. (1.2) to write ImΠEM(s+ i0) in
terms of the experimental measurements of R(s). The theory predictions for the correlator ΠEM(z)
enter the contour integral performed along a circle of radius s0 on the right-hand side of Eq. (1.3).
The compelling reason for using FESRs in the case of our analysis is that weighted integrals over
the data, which take advantage of the full data set from threshold up to s0, have a significantly
smaller relative error than local R(s) measurements. With a judicious choice of weight functions
w(s) and the presently available data for R(s) the FESRs of Eq. (1.3) lead to a competitive extraction
of αs.

The main contribution to the theoretical description of ΠEM are the perturbative QCD correc-
tions which are known at present up to order α4

s (5-loops) [15]. The perturbative contribution is
calculated in the chiral limit. Corrections due to the masses of the quarks u and d can safely be
neglected. We add the contributions due to the strange-quark mass, perturbatively, truncating the
series at three-loops. We consider the leading EM correction as well, which in the end is respon-
sible for a small shift of about −0.001 in the value of α

(n f =3)
s (m2

τ). One must also consider the
non-perturbative contributions from the condensates in the Operator Product Expansion (OPE) of
ΠEM(z) which can be written as

Π
(cond)
OPE (z) =

∞

∑
k=2

C2k(z)
(−z)k . (1.4)

Our investigations in the case of the analysis of hadronic τ data have shown that it is safe to neglect
the energy dependence of C2k(z) that arises from the αs-suppressed logarithms; the condensates
are then represented by effective constants C2k to be extracted from the data. Finally, one must
consider the contributions that go beyond the OPE and are known as (quark-hadron) duality vio-
lations DVs [16]. A reliable parametrisation for the DVs has been developed [17, 18] and it was
used to show that their contribution is sizeable for s . m2

τ . In the case of the present work, thanks
to the fact that the analysis of R(s) can be done for energies higher than m2

τ , we were able to show,
quantitatively, that it is safe to neglect the DVs in the determination of our central values [13]. The
DVs are then included, in the end, just as an additional source of theoretical uncertainty.

The weight functions that we considered in the FESRs of our analysis are

w0(y) = 1 , (1.5)

w2(y) = 1− y2 ,

w3(y) = (1− y)2(1+2y) ,

w4(y) = (1− y2)2.

This choice of weight functions is based on a few guiding principles. First, it is important to restrict
the weight functions to lower powers of y since a monomial of degree yn is maximally sensitive
to the condensate of dimension 2n+2. It is dangerous to probe the OPE at high orders [19] since
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very little is known about the C2k(z) in these cases and the series is expected to be divergent (if
asymptotic). It is also convenient to include moments that are “pinched," meaning moments that
have a zero at z= s0. The zero in these moments suppresses DVs since they are expected to be more
prominent close to the real axis. Finally, we do not include moments with a term linear in y which
would bring contributions of dimension D = 4 in the OPE, linked to a more unstable perturbative
series [12].

The central results from our analysis come from FESRs with s0 ≤ 4.0 GeV2, although in prin-
ciple we could use data at energies up to the charm threshold. The data up to 4.0 GeV2 are obtained
from sums over all exclusive hadronic channels,2 using results from many different experiments,
taking into account all the available correlated uncertainties [14]. There is a wealth of data and
a very fine binning can be achieved in this procedure. For s > 4.0 GeV2, on the other hand, the
data is obtained from the available inclusive measurements of R(s) which leads to a coarse binning.
In short, the inclusion of data for s > 4.0 GeV2 does not lead to a significant gain in information
(although compatible results are obtained when we extend the analysis beyond 4.0 GeV2).

In Sec.2 we discuss the results of our analysis and present our final values for the strong
coupling.

2. Analysis and results

The main results from our analysis come from fits performed with m2
τ ≤ s0 ≤ 4.0 GeV2. In

Fig. 1 we show a visual depiction of the results obtained from fitting to the spectral integrals with
the weight functions of Eq. (1.5) in the interval 3.25 ≤ s ≤ 4.0 GeV2. We have carefully checked
that the results are consistent between the different moments and are stable with respect to the fit
window — as long as the window is restricted to the higher-energy portion of the available interval,
in order to minimise the influence of DVs. Our final results for αs from each moment include a
theoretical error that arises from the variation of the fit window. In Tab. 1, we quote the final results
for each of the weight functions employed in our work, with an uncertainty that combines the error
from the data with an estimate for the error due to the choice of fit window. We choose to quote
results for α

(n f =3)
s (m2

τ) in order to facilitate the comparison with those obtained from hadronic
τ-decay data. The results for the condensate C6 (not shown here) which contributes to moments
using weight functions w2, w3, and w4 also comes out perfectly consistent between the fits to the
different moments [13], which indicates that our treatment of the condensate contributions is under
good control.

We have performed additional consistency checks on our results. The first one concerns the
importance of DVs. If the fit window is expanded to include s0 values below ∼ m2

τ the value of
αs becomes lower and the fit quality worsens. For these fits, consistent and stable results can be
obtained with the inclusion of a contribution from the DVs, which is modelled incorporating our
previous knowledge from the analysis of the isovector channel in hadronic τ-decay data. When the
DVs are included in this way, the values of αs obtained from the different fit windows, including
or not values of s0 below the τ mass, are fully compatible again. We therefore conclude that it
is safe to perform analyses restricting the fit windows to higher energies without the inclusion of

2In this respect our R(s) data set differs from the original analysis of Ref. [14] where the exclusive data were used
up to 3.75 GeV2
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Figure 1: Comparison of the data for I(wi)(s0) with the fits on the interval smin
0 = 3.25 to 4 GeV2, for i = 0

(upper left panel), i = 2 (upper right panel), i = 3 (lower left panel), and i = 4 (lower right panel). Solid
black curves indicate FOPT fits, dashed curves CIPT. The fit window is indicated by the dashed vertical
lines. Further details can be found in the original publication [13].

Table 1: Values for α
(n f =3)
s (m2

τ) using FOPT and CIPT from the four weights of Eq. (1.5). Uncertainties
include the error from the fit as well as an estimate of the error due to the variation of the fit window.

weight α
(n f =3)
s (m2

τ) (FOPT) α
(n f =3)
s (m2

τ) (CIPT)

w0 0.299(16) 0.308(19)
w2 0.298(17) 0.305(19)
w3 0.298(18) 0.303(20)
w4 0.297(18) 0.303(20)

a DV contribution, but we do estimate their impact on our final results and we enlarge the final
errors to encompass their effects. We have also checked that the inclusion of points in the inclusive
region, beyond 4.0 GeV2, produce compatible results, even though little is gained since very little
information is added due to the coarse binning in that region. The details of these additional tests
can be found in the original publication [13].

3. Final results and conclusions

Our final results, combining the fits to the different moments, for α
(n f =3)
s (m2

τ) are

α
(n f =3)
s (m2

τ) =

{
0.298± (0.016)data± (0.005)DVs± (0.003)pt = 0.298±0.017 (FOPT) ,
0.304± (0.018)data± (0.005DVs± (0.003)pt = 0.304±0.019 (CIPT) ,

(3.1)
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Figure 2: α
(n f =5)
s (m2

Z) from hadronic τ-decay data [5], R(s) data [13], and the PDG world average [20].

where, as indicated, the first error is from the data, the second due to the residual DV contribution,
and the third error is an estimate for the error due to the truncation of the perturbative series. It is
remarkable that the difference between FOPT and CIPT, ∼ 0.006, is rather small compared to the
results from τ decays where this difference reaches ∼ 0.016.

Evolving our final values to mZ we obtain for α
(n f =5)
s (m2

Z) (in MS) the following results

α
(n f =5)
s (m2

Z) =

{
0.1158±0.0022 (FOPT) ,
0.1165±0.0025 (CIPT) .

(3.2)

These results are somewhat lower than, but fully compatible with, the PDG world average. We
remark that the smallness of the residual theory error due to the different prescriptions for the
treatment of perturbation theory makes this determination competitive with that from τ decays. In
the latter, the nominal error of the values from FOPT and CIPT are smaller by a factor of about
two but their difference, which is a remaining theoretical uncertainty that in the end must be taken
into account, is larger by a factor of about three. A visual comparison of the results from τ decays
and from R(s) is shown in Fig. 2. In conclusion, the extraction of αs from R(s) data below charm
threshold is sound and the errors are dominated by the data uncertainties, with good prospects for
improvements in the future.
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