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1. Introduction

Increasing the precision of theoretical predictions to assist LHC experiments, requires the
knowledge of multi-loop scattering amplitudes. With the theoretical predictions accurate at next-
to-next-to leading order (NNLO) in QCD has become new standard in the recent years, the knowl-
edge of two loop scattering amplitudes becomes more and more important. Many processes that
are essential for LHC phenomenology are of multiscale nature (those with many legs or masses
present). In dealing with multiscale scattering amplitudes, we potentially encounter algebraic and
analytical challenges. The past few years have seen tremendous efforts in the attempt to attack the
algebraic challenge, using the combination of numerical computation over finite fields, and analyti-
cal reconstruction techniques [1]. Many important results for massless 2 to 3 scattering amplitudes
with five external partons have been derived using such an approach, together with differential
equation techniques to solve Feynman integrals [2–13]. In the computation of planar two-loop five
parton amplitudes, tree-level amplitudes have been used to construct the integrand via generalised
unitarity cuts. In this proceeding, we demonstrate the use of Feynman diagrams as numerator in-
put in the integrand construction, in conjunction with numerical computation over finite-fields and
analytic reconstruction on the final results. We apply this method to compute the planar W + 4
parton scattering amplitudes numerically and derive the analytic expressions for the leading colour
four-quark one-gluon amplitudes.

2. Computational setup

We generate a set of Feynman diagram using QGRAF [14] and perform colour decomposition
to obtain the colour-ordered amplitude. The numerator of Feynman diagrams that share the same
topology are grouped into a common numerator topology NT . After fixing the helicity of external
particles and performing t’Hooft algebra with the help of SPINNEY [15] library, we obtained the
following form of colour-ordered amplitude

A(2),h
n ({p}) =

∫ 2

∏
i=1

ddki

iπd/2e−εγE
∑
T

Nh
T (ds,{k},{p})

∏α∈T Dα({k},{p})
, (2.1)

where ki is the loop momenta, pi is the external momenta, d = 4−2ε is the space-time dimension,
ds = gµ

µ is the spin dimension, and Dα({k},{p}) is a set of loop propagator denominators for
each diagram topology T . We decompose the d-dimensional loop momentum into its 4- and extra-
dimensional components, k = k̄+ k̃. In order to evaluate the external kinematics over finite fields,
we require rational phase-space parametrisation that can be achieved through the use of momentum
twistor variables xi [16]. The explicit functional dependence of the helicity-dependent numerator
topology Nh

T is

Nh
T (ds,{k},{p}) = Nh

T
(
ds,xi,ki.k j, k̄i.p j,µi j,〈pa|k̄i|pb],〈pa|k̄i|k̄ j|pb〉, [pa|k̄i|k̄ j|pb]

)
, (2.2)

where µi j = k̃i.k̃ j. We apply integrand reduction algorithm to construct irreducible numerators for
each topology ∆h

T ,

A(2),h
n ({p}) =

∫ 2

∏
i=1

ddki

iπd/2e−εγE
∑
T

∆h
T (ds,{k},{p})

∏α∈T Dα({k},{p})
. (2.3)
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∆h
T is made up of a basis of irreducible scalar products (ISPs) of topology T , ∆T = ∑cT

i mT (ISP).
We determine the coefficients of monomial basis of ISPs for each topology cT

i using OPP-style
top-down approach [17]. There are freedom in choosing what type of ISP basis to be used. ISP
basis containing extra-dimensional component of the loop momentum (k.pi, µi j) can be utilised to
obtain compact integrand representations. In this work we use auxiliary propagators as our ISP
basis, that is directly compatible with integration-by-parts (IBP) reduction. In order to fix cT

i , we
first need to express the loop momentum dependent objects in Eq. 2.2 in terms of propagators and
ISPs. While objects like ki.k j and k̄i.p j can easily be written as propagators and ISPs, objects
like 〈pa|k̄i|pb], 〈pa|k̄i|k̄ j|pb〉 and [pa|k̄i|k̄ j|pb] require special treatment. We parametrise the 4-
dimensional component of the loop momenta in terms of spanning vectors v,

k̄µ

i =
4

∑
j=1

ai j(propagators, ISPs) vµ

j . (2.4)

For topologies with five or more external legs, vµ consists only of external momenta, while for
topologies with four external legs or fewer, spurious vectors need to be included in vµ . Once
the integrand representation of the helicity amplitude is constructed, we can further perform IBP
reduction to write the amplitude in a basis of master integral MIk({p},ε)

A(2),h
n ({p}) = ∑

k
cIBP

k (xi,ε) MIk({p},ε). (2.5)

IBP identities are generated in MATHEMATICA using LiteRed [18], and solved using Laporta ap-
proach [19]. Note that in our setup, the whole chain of computation starting from Feynman diagram
numerators down to the master integral representation of the amplitude in Eq. 2.5, is performed nu-
merically over finite fields within the FINITEFLOW framework [20]. In the processes with low mul-
tiplicity (2→ 2 or lower), typically the analytic form of cIBP

k (xi,ε) can be reconstructed from several
numerical evaluations. In the higher multiplicity case, however, the polynomials in cIBP

k (xi,ε) are
of high degree thus the evaluation and reconstruction become very computationally demanding. In
the case where the analytic solution of master integrals are known, and the expansion to special
function basis is possible, we can subtract the singular part of the two-loop amplitude, and ana-
lytically reconstruct only the finite remainder. The polynomial complexity of the finite remainder
typically are much lower compared to the amplitude in the master integral basis.

3. A numerical evaluation of planar two-loop W+4 parton helicity amplitudes

We apply the computational framework discussed in the previous section to compute two-
loop W + 4 parton scattering amplitudes in the leading colour approximation, including the W →
ν̄` decay. We consider both the qQ̄Qq̄′ν̄` and qggq̄′ν̄` subprocesses, with the following colour
decompositions

A (L)(1q,2Q̄,3Q,4q̄′ ,5ν̄ ,6`) = nLg2
s g2

W δ
ī2

i1 δ
ī4

i3 A(L)(1q,2Q̄,3Q,4q̄′ ,5ν̄ ,6`), (3.1)

A (L)(1q,2g,3g,4q̄′ ,5ν̄ ,6`) = nLg2
s g2

W

[
(T a2T a3) ī4

i1 A(L)(1q,2g,3g,4q̄′ ,5ν̄ ,6`)+(2↔ 3)
]
, (3.2)
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where n = mεαs/(4π) is the overall normalisation, αs = g2
s/(4π) and mε = i(4π)εe−εγE . The first

step towards deriving analytic results for W + 4 parton planar scattering amplitudes is to perform
numerical benchmarking at a specific phase-space point. We use momentum twistor parametriza-
tion for massless kinematics with 6 external particles, that involves 8 kinematic variables. Master
integrals appearing in the planar W +4 parton scattering are known analytically for the case of four
external legs or fewer [21–26]. For master integrals with five external legs, only one of the planar
family has been computed [27]. The missing master integrals are computed numerically using FI-
ESTA [28] and PYSECDEC [29]. It is challenging, however, to obtain numerical results with decent
accuracies, since large cancellations occur in the amplitude. To alleviate this issue, we introduce
a basis of master integral with local numerator insertions for the missing master integrals. Such
basis of master integral possesses improved singularity behaviour that is beneficial in the evalua-
tion using sector decomposition method. For example, the standard master integrals for one of the
pentagon-box topology are

I
(

k1k2
1

2

34

5
6

)[
1
]
, I

(
k1k2

1

2

34

5
6

)[
(k1 + p56)

2], I
(

k1k2
1

2

34

5
6

)[
(k2 + p1)

2]. (3.3)

The Laurent expansion of these integrals starts at O(ε−4), O(ε−3) and O(ε−3) respectively. The
master integrals with local numerator insertion for this topology are

I
(

k1k2
1

2

34

5
6

)[
〈4|k2|p56|4〉µ11

]
, I

(
k1k2

1

2

34

5
6

)[
[4|k2|p56|4]µ11

]
, (3.4)

I
(

k1k2
1

2

34

5
6

)[
tr−(1(k1− p1)(k1− p12)3)〈4|k2|p56|4〉

]
,

where tr±(i jkl) = 1
2 tr((1± γ5)/pi/p j/pk/pl). These local master integrals evaluate to O(ε), O(ε) and

O(1) respectively.
In Table 1, we present numerical results for qQ̄Qq̄′ν̄` and qggq̄′ν̄` processes in the t’Hooft-

Veltman (HV) scheme for each independent helicity configurations using the following Euclidean
phase-space point

x1 =−1, x2 =
79

270
, x3 =

64
61

, x4 =−
37
78

, x5 =
83

102
,

x6 =
4723
9207

, x7 =−
12086
7451

, x8 =
3226
2287

, (3.5)

normalised to the tree level amplitude according to

Â(2)
λ1λ2λ3λ4λ5λ6

=
A(2)

(
1λ1 ,2λ2 ,3λ3 ,4λ4 ,5λ5 ,6λ6

)
A(0)

(
1λ1 ,2λ2 ,3λ3 ,4λ4 ,5λ5 ,6λ6

) . (3.6)

We have verified that the divergent part of the amplitudes presented in Table 1 agree with universal
singularity structures at two loops [30–33] in the HV scheme.

4. Analytic form of planar 4-quark 1-gluon amplitudes

In this section, we present a computation of qq̄QQ̄g two-loop amplitudes in QCD in the leading
colour approximation, which is an independent calculation of [8]. In the planar massless two-loop

3
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qggq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â(2)
−++++− 4.50000 -3.63577(3) -277.2182(7) -344.56(1) 2051.1(2)

Â(2)
−+−++− 4.50000 -3.63581(9) -13.6826(2) 6.143(5) 66.21(7)

Â(2)
−−+++− 4.50000 -3.63579(5) -18.79219(7) -6.633(6) 79.02(4)

qQ̄Qq̄′ν̄` ε−4 ε−3 ε−2 ε−1 ε0

Â(2)
−+−++− 2.00000 -7.16949(9) -9.9055(2) 39.922(6) 154.79(7)

Â(2)
−−+++− 2.00000 -7.16948(8) -12.9371(1) 41.432(8) 189.53(6)

Table 1: Numerical results for qQ̄Qq̄ν̄` and qggq̄ν̄` helicity amplitudes in the leading colour limit, using
kinematic points defined in Eq. (3.5), in the HV scheme.

five-point case, the analytic solutions of the master integrals are known in the basis of the so-called
pentagon functions [34]. We map the master integrals MIk in Eq. (2.5) into a combination of
pentagon function monomials ml( f ) and subtract the divergent part of the amplitude followed by
Laurent expansion in ε to obtain the two-loop finite remainder

F(2),h
n ({p}) = ∑

l
cF,h

l (xi) ml
(

f ({p})
)
+O(ε). (4.1)

The coefficients cF,h
l (xi) appearing in (4.1), however, are not all independent. We exploit this fact

in order to simplify both the result and the reconstruction of its analytic expression, as follows.
First, we sort all the coefficients by their complexity, which is estimated from their total degree.
The total degree, in turn, can be quickly determined via an univariate fit, as explained in ref. [1].
We then find vanishing linear combinations of these coefficients by solving the linear fit problem

∑
l

yl cF,h
l (xi) = 0, (4.2)

with respect to the unknowns yl . This allows us to find linear relations between the coefficients,
which rewrite the more complicated ones in terms of the simpler ones. After applying the linear
relations between coefficients of pentagon function monomials, we have

F(2),h
n ({p}) = ∑

l
c̄F,h

l (xi) m̄l
(

f ({p})
)
+O(ε). (4.3)

where c̄F
l are the independent coefficients of pentagon function monomials and m̄l( f ) are new sets

of pentagon function monomials that are linear combinations of monomials appearing in Eq. (4.1).
Therefore, functional reconstruction only needs to be applied to the independent coefficients c̄F

l .
This yields a significantly simpler result than the one in Eq. (4.1), and also reduces the number of
evaluations needed for its reconstruction.

The colour decomposition of unrenormalized qq̄QQ̄g amplitudes at leading colour is given by

A (L)(1q,2q̄,3Q,4Q̄,5g) = nLg3
s

[
(T a5) ī4

i1 δ
ī2

i3 A(L)(1q,2q̄,3Q,4Q̄,5g)+(1↔ 3,2↔ 4)
]
. (4.4)
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The finite remainder of L-loop amplitude is obtained by subtracting the infrared (IR) and ultraviolet
(UV) poles from the unrenormalized colour-ordered amplitude

F (L)(1q,2q̄,3Q,4Q̄,5g) = A(L)(1q,2q̄,3Q,4Q̄,5g)−2LP
(L)
qq̄QQ̄g(ε)A

(0)(1q,2q̄,3Q,4Q̄,5g). (4.5)

The colour ordered amplitude A(L), the finite remainder F (L) and the pole function P
(L)
qq̄QQ̄g can be

decomposed further according to the closed fermion loop contributions

A(L)(1q,2q̄,3Q,4Q̄,5g) = NL
c

L

∑
i=0

(
N f

Nc

)i

A(L),[i](1q,2q̄,3Q,4Q̄,5g), (4.6)

F (L)(1q,2q̄,3Q,4Q̄,5g) = NL
c

L

∑
i=0

(
N f

Nc

)i

F (L),[i](1q,2q̄,3Q,4Q̄,5g), (4.7)

P
(L)
qq̄QQ̄g(ε) = NL

c

L

∑
i=0

(
N f

Nc

)i

P
(L),[i]
qq̄QQ̄g(ε), (4.8)

where N f is the number of light quarks circulating in the loop.
At two-loop the pole function P

(2)
qq̄QQ̄g is given by [30–33]

P
(2)
qq̄QQ̄g(ε) = I1(ε)

(
I1(ε)+

F̂ (1)

2

)
+ I2(ε)+

5
2

β0

2ε

(
I1(ε)+

F̂ (1)

2
+

3
2

β0

2ε

)
− 3

2

(
5
4

β 2
0

(2ε)2 −
β1

8ε

)
,

(4.9)

and at one-loop by

P
(1)
qq̄QQ̄g(ε) = I1(ε)+

3
2

β0

2ε
, (4.10)

where

F̂ (L)(1q,2q̄,3Q,4Q̄,5g) =
F (L)(1q,2q̄,3Q,4Q̄,5g)

A(0)(1q,2q̄,3Q,4Q̄,5g)
, (4.11)

is the finite remainder normalised to the tree level amplitude. To obtain the two-loop pole function
P

(2)
qq̄QQ̄g(ε), the one-loop finite remainder F̂ (1) in Eq. (4.9) must be evaluated up to O(ε2). Note

that the first two terms of Eq. (4.9) are the universal two-loop IR poles while the last two terms are
the UV counterterms. We work in the t’Hooft-Veltman (HV) scheme where the spin dimension is
set to 4−2ε .

We have derived analytic results for two-loop qq̄QQ̄g colour-ordered amplitudes using mo-
mentum twistor parametrisation in [2], including the (N f /Nc)

0, (N f /Nc)
1 and (N f /Nc)

2 contribu-
tions specified in Eq. (4.6), for +−−++, +−+−+, −+−++ and −++−+ helicity con-
figurations. In Table 2 we show total degree and the number of independent coefficients for each
helicity configurations. We note that the complexity of the rational functions to be reconstructed
depends also on the kinematic variables that are being used. The degree cF,h

l can be lowered, for
example, by using si j and tr5 instead of momentum twistor variables [8]. Further improvements can
also be made by identifying the denominator structures of the coefficients of pentagon functions
and applying partial fractioning before performing functional reconstruction [8].

5
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helicity (nmax,dmax) npoints nindep

F̂
(2),[0]
+−−++ (26,25) 23036 33

F̂
(2),[0]
+−+−+ (27,27) 32473 45

F̂
(2),[0]
−++−+ (33,33) 41433 49

F̂
(2),[0]
−+−++ (33,33) 47365 45

F̂
(2),[1]
+−−++ (23,22) 15683 25

F̂
(2),[1]
+−+−+ (27,27) 30801 32

F̂
(2),[1]
−++−+ (27,28) 22273 25

F̂
(2),[1]
−+−++ (33,33) 41601 32

F̂
(2),[2]
+−−++ ( 9, 9) 801 3

F̂
(2),[2]
+−+−+ (11,11) 1301 3

F̂
(2),[2]
−++−+ (10,10) 881 3

F̂
(2),[2]
−+−++ ( 9, 9) 705 3

Table 2: The highest degree of polynomials in the numerator and denominator of c̄F
l′ , (nmax,dmax), the

number of reconstruction points, npoints, and the number of independent coefficients, nindep of the two-loop
finite remainder normalized to the tree level amplitude, for each independent helicity configurations.

5. Summary

In these proceedings we have presented a computational framework that combines Feynman
diagram input, integrand reduction, numerical sampling over finite fields and analytic reconstruc-
tion techniques, that is applied to calculate two-loop five-point amplitudes in QCD. With the ana-
lytic form of planar massless five-parton amplitudes are available in the literature, efforts now has
shifted toward computing the non-planar contributions in order to be able to lift the leading colour
approximation, as well as looking at 2→ 3 processes with more scales involved, such as H j j, V j j
and VV j. The availability of analytic solutions of the master integrals has proven to be vital in
deriving analytic representations of the two-loop multiscale amplitudes. The numerical evaluation
of leading colour W + 4 parton amplitudes that is presented in these proceedings, shall serve as a
first step towards obtaining compact analytic representations.
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