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Figure 1: Hadronic contributions to the muon g−2.(a) HVP, (b) HLbL, (c) The vector four-point function

1. Introduction

The muon anomalous magnetic moment is among the most precisely measured quantities in
particle physics. The final result [1] differs from the Standard Model prediction by 3.5-4 σ , see
e.g. [2]. An ongoing experiment at FNAL aims to increase the measurement precision by about
a factor of four and there is an experiment under development with an innovative approach at
J-PARC.

It is thus imperative that the theoretical error should be brought down to the same level of
precision. The theoretical error is dominated by the hadronic contributions depicted schematically
in Figs. 1a and b.

The hadronic light-by-light (HLbL) contribution and the recent progress on its short-distance
part [3] is discussed in Sect. 2. The main conclusion is that the quark-loop as often used in this
respect really is the first term in a proper short-distance expansion. The lowest-order hadronic
vacuum-polarization (HVP) and our estimate of electromagnetic finite volume contributions [4] is
discussed in Sect. 3. The main conclusion here is that these corrections start at order 1/L3 and not
at order 1/L2. This is a general property and we check it explicitly in the case of scalar QED.

2. Hadronic light-by-light

This is the contribution depicted in Fig. 1b. The problem here is this contribution mixes
low- and high-energy contributions and thus as a consequence double-counting between hadron-
exchanges versus quark-gluon parts is an important aspect to consider. The hadronic object needed
is the vector four-point function depicted in Fig. 1c. In general this has 138 Lorentz-structures but
in four dimensions there are 41 independent combinations. Of these 12 combinations are needed
in the limit q4→ 0. A full analysis and references to earlier work can be found in [5]. Based on
the dispersive method of [5] the long-distance contribution can clearly be brought under control.
The major remaining part is now the intermediate and short-distance behaviour. The quark-loop
has been used in this context before [6, 7]. The operator product expansion (OPE) has been used in
the HLbL context in many ways before, mainly to put restrictions on the behaviour of form-factors
of hadrons but also to put constraints on the full vector four-point function in the kinematic limit
Q2

1 ≈ Q2
2� Q2

3 with q2
i =−Q2

i and all momenta Euclidean [8].

1



P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
4
8
6

Analytical results for (g−2)µ Johan Bijnens

q4q1

q2 q3

p

(a)

q4q1

q2 q3

(b)

⊗
“q4”

q1 q2

q3

p

(c)

⊗
“q4”

q1 q2

q3

(d)

Figure 2: The quark-loop contribution: (a) the standard one, (b) a divergent OPE correction, (c) the quark-
loop in the OPE in a background field, (d) the next order in the background field OPE with an insertion of
the induced condensate.

Qmin quark-loop muXu +mdXd msXs

1 GeV 17.3×10−11 5.40×10−13 8.29×10−13

2 GeV 4.35×10−11 3.40×10−14 5.22×10−14

Table 1: Numerical results for the quark-loop and the next term in the OPE.

We look now at the case where Q2
1,Q

2
2,Q

2
3 � Λ2

QCD. The quark-loop contribution depicted
in Fig. 2a is finite in this limit but if we try to calculate higher order terms in the OPE, e.g. the
mq〈q̄q〉 contribution we get divergences when putting q4→ 0. This is clearly seen in Fig. 2b where
the red propagator diverges in this limit. A similar problem occurred in QCD sum rules for the
baryon magnetic moments [9] and we have adapted their method to the case at hand. We use an
OPE in the presence of the background field and use the radial gauge for the background field. The
latter allows to immediately take the limit q4→ 0 and the lowest order contribution is depicted in
Fig. 2c. The propagator with the crossed circle is the quark propagator in the background field.
This contribution is exactly the same as the usual quark-loop calculated via Fig. 2a [3]. The next
term is proportional to the induced condensate 〈q̄σαβ q〉 ≡ eqFαβ Xq. The quantities Xq have been
determined in lattice QCD and are about 40 MeV [10]. The contribution to HLbL can be written
using six functions [5] and for the next term these are given by1

Π̂1 =mqXqe4
q
−4(Q2

1 +Q2
2−Q2

3)

Q2
1Q2

2Q4
3

, Π̂7 =0, (2.1)

Π̂4 =mqXqe4
q

8
Q2

1Q2
2Q2

3
, Π̂17 =mqXqe4

q
8

Q2
1Q2

2Q4
3
, (2.2)

Π̂54 =mqXqe4
q
−4(Q2

1−Q2
2)

Q4
1Q4

2Q2
3

, Π̂39 =0. (2.3)

Note that they are suppressed w.r.t. the pure quark-loop by two powers of the hard scales, not four
as would be expected from a first contribution arising from 〈αSG2〉 or mq〈q̄q〉.

Numerical results for the quark-loop and the next term in the OPE for Q1,Q2,Q3 ≥ Qmin,
mu = md = ms = 0 for the quark-loop and mu = md = 5 MeV and ms = 100 MeV for mqXq are
given in Tab. 1. To be noted that for the quark-loop the contribution above 1 GeV is still 15% of

1These differ by a factor of −2 from the preliminary results shown at the conference.
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the total value of HLbL estimated. The quark-loop goes as 1/Q2
min and the mqXq contribution goes

as 1/Q4
min. This can be shown using dimensional arguments. The second term is very small since

both the values for Xq and the relevant quark-masses are very small. Higher order terms will not
have this suppression and are under investigation.

3. Hadronic vacuum-polarization

The lowest-order hadronic-vacuum-polarization contribution is the largest hadronic contribu-
tion to the muon anomalous magnetic moment. It can be determined via a dispersion relation
directly from experiment and the precision of these determinations is about 0.5%. Low-energy
QCD can also be studied via lattice QCD. The present accuracy is a few %, see e.g. [11], but the
precision is expected to improve in the future. The precision needed requires that electromagnetic
and other isospin breaking corrections are taken into account. The finite volume corrections are
known to two-loop order in Chiral Perturbation Theory [12] but the electromagnetic finite volume
corrections can be much larger since they are only suppressed by powers of the lattice size L, 1/Ln

rather than exponentially, exp(−mL).
The main object here is the vector two-point function

Π
µν

EM(q) = i
∫

d4xeiq·x〈0|T ( jµ
a (x) jν†

b (0)|0〉 (3.1)

with jµ

EM =(2/3) jµ

U−(1/3) jµ

D−(1/3) jµ

S and jµ

Q = qγµq. In the continuum we can write Π
µν

EM(q)=(
qµqν −q2gµν

)
ΠEM(q2) and the contribution to the anomalous magnetic moment is with a known

positive weight function v and Q2 =−q2:

aµ =
∫

∞

0
dQ2v(Q2)

(
−Π(Q2)+Π(0)

)
. (3.2)

We first calculate the finite volume electromagnetic correction in scalar QED with Lagrangian

L =
(
∂µΦ

∗+ ieAµΦ
∗)(

∂µΦ− ieAµΦ
)
−m2

0Φ
∗
Φ− 1

4
FµνFµν . (3.3)

The λ (Φ∗Φ)2 is not needed to the order we are working. The photon corrections are calculated
using the methods of [13] extended to two-loop order. The integral over photon momenta in loop
integrals is replaced by the sum ∫

ddk
1
k2 →

∫
dk0

∑
~k

1

(k0)2−~k2
(3.4)

and the sum needs regularizing. In QEDL we do this by dropping the parts in the sum with~k = 0.
As an example take the two-loop integral

S =
1
i2

∫ dd l
(2π)d

ddk
(2π)d

1
k2(l2−m2)((k+ l− p)2−m2)

. (3.5)

The l0,k0 integrals are done via contour integration and we now write~k = 2π

L ~n and expand in 1/L.
The~k part can be written as

1
Ld−1 ∑

~n6=~0
=
∫ dd−1k

(2π)d−1 +

 1
Ld−1 ∑

~n6=~0
−
∫ dd−1k

(2π)d−1

 (3.6)
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Figure 3: The diagrams to two-loop order of the vector two-point function in scalar QED. Lowest-order is
the top line. Not shown are the diagrams involving counterterms and the disconnected contribution.

In the first term we resum the series in 1/L which gives the infinite volume contribution. The
quantity in brackets we define to be

(
1/Ld−1

)
∆′~n and the 1/Ln dependence can be characterized via

the coefficients cm = ∆′~n
1
|~n|m . These are known numerically.

The correction to the mass is

∆V m2

m2 = e2
(

4c2

16π2mL
+

2c1

16π2m2L2 +O

(
1
L4 ,e

−mL
))

(3.7)

which agrees with the known result. Numerically this can be a very large correction. It starts at
1/L since the photon and the pion can both be (almost) on-shell.

The two-point function can be calculated from the diagrams in Fig. 3 To be precise we calcu-
lated, with tµν the spatial part of gµν

Π̃((p0)2)≡ −1
3p2 tµν (Π

µν(p)−Π
µν(p = 0)) (3.8)

which reduces to Π(p2) in the infinite volume limit. In terms of the functions

Ωi j(p2/m2) =
∫ dd−1l

(2π)d−1
mi+2 j−d+1

(~l2 +m2)i/2(4~l2 +4m2− p2) j
(3.9)

we obtain

Π̃(p2) = +
c0

m3L3

(
− 16

3
Ω0,3−

5
3

Ω2,2 +
40
9

Ω2,3−
3
8

Ω4,1 +
7
6

Ω4,2 +
8
9

Ω4,3

)
+O

(
1
L4 ,e

−mL
)
.

(3.10)

Note that it starts only at order 1/L3. This is because the two-point function is a neutral object
and far away the photon sees only the dipole effect, not a charge. In the Euclidean all meson lines
are off-shell as well. We have checked that our analytical result agrees well with the same result
obtained using lattice perturbation theory for scalar QED as well as with a numerical evaluation
putting scalar QED on a lattice. Details can be found in [4].
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Figure 4: A generic QED correction to the vector two-point function.

The conclusion that the correction only starts at 1/L3 is general. The correction can be seen as
the generic diagram in Fig. 4. If we cut open the photon line it reduces the blob to the vector four-
point function shown in Fig. 1c. That four-point function has no infra-red singularities, that can
be seen from the analysis in [5] and references therein. Gauge-invariance enforces at least a factor
cancelling the photon singular behaviour as discussed in more detail in [4]. The 1/L3 behaviour
is universal though the coefficient in front is not. For reasonable values of L the finite volume
correction is thus expected to be small and negligible for the precision needed in the near future.

4. Conclusions

This talk presented the main result of [3] and [4]. Both concern hadronic contributions to the
muon anomalous magnetic moment. In the first we obtained that the usual quark-loop is indeed
the first term in a systematic OPE. The next term was also calculated and found to be numerically
small. In the second we showed that the electromagnetic finite volume corrections to the vector
two-point function in general only start at order 1/L3 and checked these results in scalar QED with
a continuum method, lattice perturbation theory and a numerical lattice scalar QED calculation.
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