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Transverse Momentum Dependent parton distribution functions allow to take into account apart
from the proton momentum fraction also transverse momenta of initial partons in the description
of hadronic cross-section. They are therefore a promising tool to obtain a more precise descrip-
tion of kinematics of hadronic observables. In this talk we present our most recent results in the
determination of transverse-momentum-dependent splitting kernels. Our approach is based on a
combination of high energy and collinear factorization and aims at the formulation of a general-
ized TMD framework.
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1. Introduction

Parton distributions functions (PDFs) provide indispensable input to the description of hard
scattering processes at hadron colliders. Given the hierarchy M�ΛQCD where M denotes the hard
scale and ΛQCD the QCD characteristic scale of the order of a few hundred MeV, hadronic cross-
sections can be factorized into convolutions of parton distribution functions and corresponding
partonic matrix elements. The latter can be calculated within perturbative QCD. Current collider
phenomenology is predominantly based on the framework of collinear factorization [1–3], where
the incoming parton momenta are treated to be collinear to the momentum of the respective mother
hadron. Through the determination of hard matrix elements to higher perturbative order in the
strong coupling constant αs, it is possible to improve systematically on the precision of the theoret-
ical prediction. Among other aspects, such as reducing the scale dependence due to the ambiguity
in factorization- and renormalization scales, these higher order corrections further serve to improve
the kinematic approximation inherent to the leading order description, where initial parton mo-
menta are taken to be collinear with the respect to the mother hadron.

As an alternative to improving the kinematic description through the calculation of higher
order corrections, one may attempt to treat kinematics exactly from the very beginning. This
implies to include the bulk of kinematic effects already in the leading order description and to
achieve in this way possibly improved convergence of the perturbative series. An example of such
kinematic effects on which we will focus on in the following, is the transverse momentum kT of
the initial state partons. Within collinear factorization, this transverse momentum is set to zero.
Schemes which provide an improved kinematic description already at the leading order involve
in general Transverse-Momentum-Dependent (TMD) or ‘unintegrated’ PDFs. We also note that
a possible implementation of such a transverse momentum dependent factorization with various
phenomenological applications is currently being realized within the so-called parton branching
method, see [4, 5], where evolution is based on collinear splitting kernels.

2. Kinematic considerations for TMD factorization

In the following we take a closer look at the kinematics required for a transverse momentum
dependent factorization. TMD PDFs arise naturally in regions of phase space which are character-
ized by a hierarchy of scales. A region of phase space where a TMD factorization is essentially
obtained as a by-product, is provided by the so called low x region. Here x is the ratio of the hard
scale M2 of the process over the center-of-mass energy squared s. One therefore considers the
hierarchy s�M2� Λ2

QCD. For this kinematical setup, large logarithms ln1/x can compensate for
the smallness of the perturbative strong coupling αs and it is necessary to resum terms (αs ln1/x)n

to all orders to maintain the predictive power of the perturbative expansion. Such a resummation is
achieved by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [6–9] evolution equation. Its formulation
is based on factorization of QCD amplitudes in the high energy limit, s� M2. In this kinematic
limit, QCD cross-sections are expressed as convolutions in transverse momentum, similarly to con-
volutions in momentum fraction of conventional collinear factorization. As a consequence, cross-
sections are automatically factorized into kT dependent impact factors and the so-called BFKL
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σ̂

k1,T , α1, β1 =
k21,T

α12p·n

p

n

k2,T , α2, β2 =
k22,T

α22p·n

k3,T , α3, β3 =
k23,T

α32p·n

ki = αip + βin + kT,i

Figure 1: Parton cascade

Green’s function. Matching of high energy factorization to collinear factorization which identifies
properly normalized impact factors and Green’s function with unintegrated gluon density and kT -
dependent perturbative coefficients is then achieved by so-called kT -factorization [11].

Even though high energy factorization provides a well defined framework for calculations
of evolution kernels and coefficient functions and can be extended to higher perturbative order,
see [12,13] and [14–17], the applicability of the results is naturally limited to the low x limit of hard
scattering events. Within the so-called Multi-Regge-Kinematics, which underlies the formulation
of the BFKL evolution equation, the proton momentum fraction αi are strongly ordered,

x� α1� α2� . . . , (2.1)

see Fig. 1 for the precise definition. As a consequence one resums only the terms enhanced by
logarithms in ln1/x. Isolating the logarithmically enhanced contribution of the proton momentum
fraction, the latter are not conserved and the information about proton fractions are lost along the
chain. On the other hand there is no ordering in transverse momenta; within the Multi-Regge-
Kinematics, transverse momenta are generally taken to be of the same order of magnitude kT,i ∼
kT, j. Collinear factorization covers on the other hand the complimentary case: transverse momenta
are strongly ordered along the parton cascade

M� k1,T � k2,T � . . . , (2.2)

as needed for a resummation of logarithms in the hard scale lnM2. As a consequence, information
about transverse momenta is lost. Proton momentum fraction are on the other hand taken to be of
the same order of magnitude αi ∼ α j and are kept exactly.
To arrive at a more precise treatment of kinematics along the parton cascade, it is clearly needed

to arrive at a unification of both evolution schemes. A first suitable variable, which might serve as
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α1, kT,1

α2, kT,2

Figure 2: subsequent emissions

an evolution parameter along the chain might be given by the rapidity of the emitted parton,

η =
1
2

ln
α

β
= ln

α(2p ·n)
|kT |

. (2.3)

For two subsequent emissions along a parton chain, strong ordering in rapidity implies,

η21 = η2−η1 = ln
α2|kT,1|
α1|kT,2|

� 1, (2.4)

see also Fig. 2. It is now straight forward to realize that this condition covers both the collinear
limit (strong ordering in transverse momenta, t proton momentum fraction of the same order of
magnitude) and the high energy limit (strong ordering in proton momentum fractions, transverse
momenta of the same order of magnitude). As an alternative to ordering in rapidity, one might
instead consider ordering in the momentum fraction of the collision partner, i.e. making use of the
notation of Fig. 1 in the βis. Since

β1� β2� . . . (2.5)

translates into

k2
T,1

α12n · p �
k2

T,2

α22n · p � . . . (2.6)

for real produced partons, ordering in the Sudakov parameters β allows for a combination of both
DGLAP and high energy kinematics.

3. Transverse momentum dependent splitting kernels

Our starting point for the formulation of transverse momentum dependent parton evolution is
given by the 2PI-expansion of [10].We include so-called kinematic higher twist effects to all orders,
but restrict ourselves for the moment to the dilute region where exchange of multiple chains is sub-
leading. β -ordering corresponds then for a certain splitting kernel Ki j, i, j = q,g to treat the out-
going momentum q (in the t-channel) exactly, while the β -component of the incoming momentum
k is ignored; the momentum is taken within the typical kinematics of high energy factorization
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l = n− x · p

p

l = n− x · p

p

C2q

Kqg

Kgq

Figure 3: Factorization of a 4-point correlator

k = xp+ kT . Requiring agreement in the well-established limiting cases, i.e. the high energy and
collinear limit, as well as ensuring current conservation in presence of off-shell t-channel partons,
the following angular averaged real splitting kernels have been determined:

P̄(0)
qg

(
z,

kkk2

q̃qq2

)
= TR

(
q̃qq2

q̃qq2 + z(1− z)kkk2

)2
[

z2 +(1− z)2 +4z2(1− z)2 kkk2

q̃qq2

]
, (3.1)

P̄(0)
gq

(
z,

kkk2

q̃qq2

)
=CF

[
2q̃qq2

z|q̃qq2− (1− z)2kkk2|
− (2− z)q̃qq4 + z(1− z2)kkk2q̃qq2(

q̃qq2 + z(1− z)kkk2
)2

]
, (3.2)

P̄(0)
qq

(
z,

kkk2

q̃qq2

)
=CF

q̃qq2

q̃qq2 + z(1− z)kkk2

×
[

q̃qq2 +(1− z2)kkk2

(1− z)|q̃qq2− (1− z)2kkk2|
+

z2q̃qq2− z(1− z)(1−3z+ z2)kkk2

(1− z)(q̃qq2 + z(1− z)kkk2)

]
. (3.3)

P̄(0)
gg

(
z,

kkk2

q̃qq2

)
=CA

q̃qq2

q̃qq2 + z(1− z)kkk2

[
(2− z)q̃qq2 +(z3−4z2 +3z)kkk2

z(1− z)
∣∣∣q̃qq2− (1− z)2kkk2

∣∣∣
+

(2z3−4z2 +6z−3)q̃qq2 + z(4z4−12z3 +9z2 + z−2)kkk2

(1− z)(q̃qq2 + z(1− z)kkk2)

]
(3.4)

The obtained splitting functions do not only incorporate the correct high energy and collinear limits,
but furthermore re-produce in the limit of vanishing transverse momentum of the emitted gluon
(for the quark-to-quark and gluon-to-gluon splitting) the corresponding terms of the CCFM kernel
[21, 22] and will allow in the future for a first exploration of transverse momentum dependent
splitting kernels in the parton chain.
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