

Recent results on hadronic cross sections measurements at BABAR for the g-2 calculation

V. P. Druzhinin^{*ab}, for BABAR collaboration

^a Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia

^b Novosibirsk State University, Novosibirsk, 630090, Russia

E-mail: druzhinin@inp.nsk.su

A program of measuring the light hadrons production in exclusive $e^+e^- \rightarrow$ hadrons processes is in place at BABAR with the aim to improve the calculation of the hadronic contribution to the muon g-2. We present the most recent results obtained by using the full data set of about 470 fb⁻¹ collected by the BABAR experiment at the PEP-II e^+e^- collider at a center-of-mass energy of about 10.6 GeV. In particular, we report the results on the channels $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$, and $e^+e^- \rightarrow \pi^+\pi^-\eta$. The first reaction, in particular, presently gives the main uncertainty on the total hadronic cross section in the energy region between 1 and 2 GeV.

European Physical Society Conference on High Energy Physics - EPS-HEP2019 -10-17 July, 2019 Ghent, Belgium

*Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The precise measurement of e^+e^- annihilation into hadrons is needed, in particular, for Standard Model (SM) calculation of the anomalous magnetic moment of muon $a_{\mu} = (g_{\mu} - 2)/2$. Currently, 3.3–4.1 σ difference is observed between experiment [1] and the SM calculations [2, 3, 4], and the experimental and theoretical accuracies are close to each other. A new measurement is currently carried out at Fermilab [5], which is expected to improve the a_{μ} accuracy by a factor of at least 4. Another measurement is planned at J-PARC [6]. More than 50% of the SM a_{μ} error comes from the leading-order hadronic vacuum polarization contribution $a_{\mu}^{had,LO}$, which cannot be obtained accurately from theory alone. It is calculated using dispersion relation from experimental measurements of the total cross section e^+e^- annihilation into hadrons. Low energies, below 2 GeV, give the dominant contribution to $a_{\mu}^{had,LO}$. In this energy region the total hadronic cross section is determined as a sum of exclusive hadronic cross sections.

The BABAR detector [7] collected data at the PEP-II asymmetric e^+e^- collider at SLAC (9 GeV e^- and 3.1 GeV e^+) in 1999-2008. It has an extensive program of measurement of exclusive hadronic cross sections at low energy based on the initial state radiation (ISR) technique. A data sample of 469 fb⁻¹ recorded near or at a center-of-mass energy of 10.58 GeV is used in these measurements. In the ISR process $e^+e^- \rightarrow f\gamma$, the mass spectrum of the hadronic system f is related to the cross section of the reaction $e^+e^- \rightarrow f$. This allow to perform the measurement of the low-energy hadronic cross section in a wide energy range at a high-luminosity collider operating at a fixed energy. BABAR has studied more than 30 final hadronic states: all two- and three-body, almost all four-body, partly five- and six-body. The main goal is to measure (together with other experiments) all final states contributing to $a_{\mu}^{had,LO}$ below 2 GeV.

2. Study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ and $e^+e^- \rightarrow \pi^+\pi^-\eta$ reactions

The process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ has a largest hadronic cross section in the energy region 1.2– 2.2 GeV, and is very important for the $a_{\mu}^{had,LO}$ calculation. Its cross section measured by BABAR [8]

Figure 1: Left panel: The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section measured by BABAR in comparison with previous measurements. Right panel: The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ cross section measured by BABAR in comparison with previous measurements.

is shown in Fig. 1 (left) in comparison with previous measurements. The BABAR results are the

V. P. Druzhinin

most precise and cover a wider energy range. The systematic uncertainty is 3.1% in the 1.2–2.7 GeV energy range. The contribution to $a_{\mu}^{had,LO}$ for $1.02 < \sqrt{s} < 1.8$ GeV is measured to be $(179 \pm 6) \times 10^{-11}$ (3.4% precision). This significantly improves the previous result $(180 \pm 12) \times 10^{-11}$.

The reaction $e^+e^- \rightarrow \pi^+\pi^-\eta$ is studied [9] in the $\eta \rightarrow \gamma\gamma$ mode. It is expected to proceed via the $\rho(770)\eta$ intermediate state and is important for spectroscopy of excited ρ -like states.

The BABAR results on the $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section shown in Fig. 1 (right) agrees well with the previous measurements, but is more precise and covers a wider energy range. The systematic uncertainty near the cross-section maximum, 1.35–1.80 GeV, is 4.5%.

The $\pi^+\pi^-$ mass spectrum for data from the energy region 1.4–2.0 GeV is shown in Fig. 2 (left) in comparison with the simulated signal spectrum. The simulation uses the model of the $\rho(770)\eta$ intermediate state. The observed difference between data and simulated spectra may be explained by the contribution of other intermediate states, for example $\rho(1450)\eta$, and their interference with the dominant $\rho(770)\eta$ amplitude. This effect was observed previously in the SND experiment [10].

Figure 2: Left panel: The two-pion invariant mass distribution for data (points with error bars) and simulated (histogram) events from the mass range $1.4 < m_{\pi^+\pi^-\eta} < 2.0$ GeV. Right panel: The comparison of the $B(\tau^- \to \pi^-\pi^0\eta\nu_{\tau})$ values calculated using CVC hypothesis from the $e^+e^- \to \pi^+\pi^-\eta$ cross section with direct measurements.

The conserved vector current (CVC) hypothesis and isospin symmetry allow to use data on the $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section to predict the branching fraction for the decay $\tau^- \rightarrow \pi^-\pi^0\eta\nu_{\tau}$. The BABAR results on this branching fraction based on the $e^+e^- \rightarrow \pi^+\pi^-\eta$ measurement in the $\eta \rightarrow \gamma\gamma$ and $\eta \rightarrow \pi^+\pi^-\pi^0$ [11] modes is $B(\tau^- \rightarrow \pi^-\pi^0\eta\nu_{\tau}) = 0.163 \pm 0.008\%$. Its comparison with direct measurements and previous CVC based calculations is presented in Fig. 2 (right). The difference between the PDG value [12] and our calculation is 1.8 σ .

3. Study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ and $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ reactions

The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ cross section was measured previously in the M3N, MEA experiments with very limited precision. The BABAR result [13] is shown in Fig. 3 (left). The systematic uncertainty of the BABAR measurement below 2 GeV is 10%. The four intermediate states contribute into the cross section: $\pi^+\pi^-\eta$, $\omega\pi^0\pi^0$, $\rho^{\pm}\pi^{\mp}\pi^0\pi^0$ and $\rho^+\rho^-\pi^0$. The states with ρ meson dominate above 2 GeV. The fraction of $\rho^+\rho^-\pi^0$ events relative to the number of $\rho^{\pm}\pi^{\mp}\pi^0\pi^0$ events is 50% below 2.5 GeV. This fraction decreases with increase of energy and is 20% near 3 GeV. Below 1.8 GeV the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ cross section is saturated by the $e^+e^- \rightarrow \pi^+\pi^-\eta$ and

 $e^+e^- \rightarrow \omega \pi^0 \pi^0$ reactions. The $e^+e^- \rightarrow \pi^+\pi^-\eta$ cross section measured in the $\eta \rightarrow 3\pi^0$ mode agrees well with the measurements discussed in the previous section. The $e^+e^- \rightarrow \omega \pi^0 \pi^0$ cross section measured for the first time is presented in Fig. 3 (right).

Figure 3: The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ (left) and $e^+e^- \rightarrow \omega\pi^0\pi^0$ (right) cross sections measured by BABAR.

Figure 4: The $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ (left) and $e^+e^- \rightarrow \omega\pi^0\eta$ (right) cross sections measured by BABAR. The latter cross section are compared with previous SND measurement [14].

The cross section for the process $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ shown in Fig. 4 (left) is measured for the first time [13]. The systematic uncertainty of this measurement below 2.5 GeV is 13%. This process contributes significantly to the total hadronic cross section near 2 GeV. The $\pi^+\pi^-\pi^0\pi^0\eta$ final state, like that for $\pi^+\pi^-\pi^0\pi^0\pi^0$, has a rich substructure. The dominant intermediate state below 2 GeV is $\omega\pi^0\eta$. The $e^+e^- \rightarrow \omega\pi^0\eta$ cross section measured by BABAR is shown in Fig. 4 (right) in comparison with previous results from SND [14]. The SND data are seen to lie systematically above our data. A significant fraction of the $e^+e^- \rightarrow \omega\pi^0\eta$ events contain $a_0(980)$ decaying to $\pi^0\eta$. Above 2.5 GeV the dominant mechanism is $\rho^{\pm}\pi^{\mp}\pi^0\eta$. Some fraction of these events contain two ρ meson, i.e. proceed via $\rho^+\rho^-\eta$ intermediate state. Between 2 and 3 GeV there is also signal of the OZI-suppressed process $e^+e^- \rightarrow \phi\pi^0\eta$, which contribution to the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ cross section reaches 15%.

4. Summary

Precise low-energy e^+e^- hadronic cross section data are needed to obtain an accurate SM prediction for $a_{\mu}^{had,LO}$. Recent BABAR results on $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ and other processes reduce the respective uncertainty in $a_{\mu}^{had,LO}$. Two previously unmeasured processes $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$ and $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\eta$ contributing to the total hadronic cross section below 2 GeV have been studied. Several ISR processes are under analysis or planned to be studied at BABAR: $e^+e^- \rightarrow \pi^+\pi^-$,

V. P. Druzhinin

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ with the full BABAR dataset, $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-3\pi^0$, $e^+e^- \rightarrow K_S K^+\pi^-\pi^0\pi^0$, etc. Currently, the sum of exclusive cross sections near 2.0 GeV shows a systematic deviation from the QCD predictions. BABAR measurements of previously unmeasured processes may reduce this deviation.

References

- [1] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73, 072003 (2006).
- [2] F. Jegerlehner, EPJ Web Conf. 166, 00022 (2018) [arXiv:1705.00263 [hep-ph]].
- [3] A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, 114025 (2018).
- [4] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, arXiv:1908.00921 [hep-ph].
- [5] J. Grange et al. (Muon g-2 Collaboration), arXiv:1501.06858 [physics.ins-det].
- [6] Y. Sato (E34 Collaboration), PoS KMI 2017, 006 (2017).
- [7] B. Aubert et al. (BaBar Collaboration), Nucl. Instrum. Meth. A 479, 1 (2002).
- [8] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 96, 092009 (2017).
- [9] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 97, 052007 (2018).
- [10] V. M. Aulchenko et al. (SND Collaboration), Phys. Rev. D 91, 052013 (2015).
- [11] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D. 76, 092005 (2007).
- [12] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 010001 (2018).
- [13] J. P. Lees et al. (BaBar Collaboration), Phys. Rev. D 98, 112015 (2018).
- [14] M. N. Achasov et al. (SND Collaboration), Phys. Rev. D 94, 032010 (2016).