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With the experimental observation of several credible candidates for multiquark hadrons, the latter

states re-entered the focus of interest of theoretical strong-interaction physics. Proper treatment of

hadronic bound states by quantum chromodynamics, QCD, the quantum field theory governing all

strong interactions, necessitates a nonperturbative approach. A well-established framework of this

kind is provided by QCD sum rules relating hadron features tothe parameters of QCD. Conceptual

reconsideration, however, reveals that, in order to reallymatch the peculiarities of multiquarks, the

long-standing conventional QCD sum-rule techniques evidently must be subjected to considerable

modification. The so far overlooked necessity for such adaptations is most easily demonstrated for

the case of least complexity, that is, for tetraquarks, bound states of two quarks and two antiquarks.
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1. Preliminaries: Setting the Theater of Multiquark QCD Sum-Rule Considerations

The quantum field theory of strong interactions,quantum chromodynamics, enables as possible
(colour-singlet) bound states of quarks and gluons not justquark–antiquark mesons and three-quark
baryons, usually subsumed by the notion ordinary hadrons, but alsomultiquarkhadrons, sometimes
dubbed exotic. For the latter species, we seek trustworthy descriptions by means of QCD sum rules.

QCD sum rules[1] constitute a nonperturbative approach to bound states of quarks and gluons,
the basic degrees of freedom of QCD, in form of analytic relations between observable properties of
hadrons, on the one hand, and the parameters of QCD, i.e., strong coupling and quark masses, on the
other hand. Usually, they are distilled by evaluation of correlation functions of hadroninterpolating
operatorsdefined in terms of quark and gluon fields at bothphenomenological(hadronic) andQCD
levels: by insertion of a complete set of hadron states, conversion of nonlocal operator products into
series of local operators by use of Wilson’s [2]operator product expansion, removal of any required
subtraction terms and suppression of the hadron contributions above the ground state by performing
Borel transformations, and relying on the assumption that all perturbative QCD contributions above
Borel-variable governed [3–5]effective thresholdscancel against hadron continuum. At QCD level,
the relationships receive both purely perturbative contributions, conveniently represented in form of
dispersion integrals of spectral densities, and nonperturbative contributions involving QCD vacuum
condensates multiplied by powers of Borel variables and therefore being dubbed power corrections.

Before adopting QCD sum-rule techniques for extracting information on the basic properties of
multiquark states, such as tetraquarks and pentaquarks, two issues have to be settled: an, or even the
most, suitable choice of interpolating operators and the formulation of a selection criterion ensuring
an unambiguous identification of all relevant QCD contributions to the correlators considered [6,7].

In terms of quark flavour quantum numbersa,b,c,d∈{u,d,s,c,b}, a tetraquarkT is a mesonic
bound state(qaqb qcqd) of two quarksqb, qd and two antiquarksqa, qc, with massesma, mb, mc, md.
Thecolourdegree of freedom of the (anti-) quarks, transforming according to the three-dimensional
(anti-) fundamental representation of the gauge group SU(3) underlying QCD, does not matter for a
trivial reason. Labelling each representation by its dimension, one notices the appearance of merely
two SU(3) singlet representations in the tensor product of two 3 and two3 representations of SU(3):

3⊗3⊗3⊗3= 81= 1⊕1⊕8⊕8⊕8⊕8⊕10⊕10⊕27 .

It is easy to demonstrate that, irrespective of the route followed in the formation of each of these two
colour singlets in intermediate steps, by application of Fierz transformations the arising operators of
two-quark–two-antiquark form can be recast into the shape of known sums of products of colourless
quark–antiquark bilinear operators. In view of these observations, for the construction of tetraquark
interpolating operators it suffices to utilize, as local building blocks,colour-singletquark–antiquark
bilinear currents of (if suppressing possible but for the following irrelevant Dirac structures) generic
shapejab(x)≡ qa(x)qb(x). With these, no more than only twotetraquark interpolating operatorsof
current–current form are conceivable, namely,θabcd(x)≡ jab(x) jcd(x) andθadcb(x)≡ jad(x) jcb(x).

Since the quark content of a tetraquark may likewise (or preferably) form two ordinary mesons,
we use sharp blades. Presumptive QCD support of a tetraquarkpole is calledtetraquark-phile[8,9]:

The set of all tetraquark-phile Feynman diagrams is straightforwardly characterized [6]
by the behaviour of each member as function of the appropriate Mandelstam variables:
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any member has to depend nonpolynomially, i.e., nontrivially, onsand to enable one or
more genuine four-quark intermediate states by exhibitingbranch cuts (the existence of
which can be verified by reverting on Landau’s equations [10]) starting at branch points
defined by the masses of the bound-state constituents, i.e.,ats=(ma+mb+mc+md)

2.

2. Brief Line of Argument: Tetraquark Characteristics from Two-Point Correlators

Given a tetraquarkT, we intend to derive its basic features, i.e., its massM and decay constants

fabcd ≡ 〈0|θabcd|T〉 and fadcb ≡ 〈0|θadcb|T〉 ,

from its pole contributions to two-point correlators of appropriate operatorsθ , by formulating QCD
sum rules which take into account the nonconventional nature of multiquarks [11]. For definiteness,
let us sketch our reasoning for the case of tetraquarks involving four different quark flavours. There,
we better discriminate two types of contributions to the tetraquark poles, namely, flavour-preserving
and flavour-rearranging ones, emerging from adopting two interpolating operators of either equal or
unequal quark flavour distributions. When evaluating some correlator at QCD level, its perturbative
contributions will emerge in form of series expansions in powers of the strong couplingαs≡ g2

s/4π.
Figure 1 recalls the quark-bilinear origin offlavour-retainingcorrelators at lowest orders ofαs.
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Figure 1: Flavour-preserving Feynman diagrams contributing at strong-coupling orderO(α0
s ) (a),O(αs) (b),

andO(α2
s ) (c) to correlators of four quark-bilinear currentsj (left) as well as, by exerting configuration-space

pair contraction of quark-bilinear currentsj, to correlators of two tetraquark interpolating operatorsθ (right).

Now, Feynman diagrams of order less thanO(α2
s ) donotcomply with the criteria necessary for

deeming themtetraquark-phile: Those ofO(α0
s ) [e.g., Fig. 1(a)] and those ofO(αs) [e.g., Fig. 1(b)]

with a single gluon (indicated by curly black lines) exchanged inside a quark loop contribute only to
two ordinary mesons. All those ofO(αs) with a single gluon exchanged between the two, otherwise
disconnected quark loops are proportional to the definitelyvanishing traces of all SU(3) generators.
Hence, only atO(α2

s ) [e.g., Fig. 1(c)]or higherFeynman diagrams start to contribute to tetraquarks.
Feeding the QCD sum-rule machinery with the inferred correlators, without paying attention to
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multiquark peculiarities, yields relations between QCD and hadron (identified by dashed blue lines)
representations generically involving not only connectedcontributions but alsonot tetraquark-phile
contributions separable (illustrated by a dot-dashed red line) into twounconnectedportions (Fig. 2).
Each of these two unconnected portions forms, however, the QCD sum rule for the correlator of two
quark-bilinear currentsj, i.e., for anordinary meson(Fig. 3): a lucky circumstance that enforces the
exact cancellationof all unconnected QCD and hadron contributions. That simple observation [11],
if and only if taken into account, yields anadequateQCD sum-rule approach to tetraquarks (Fig. 4).

+ ...

...

...

...

+

Hadron side of SROPE side of SR

+

+ +
....

....

=

Figure 2: Diagrammatic QCD sum rules emerging from correlators of twotetraquark interpolating operators
θ , as a consequence of the unreflecting observance of conventional recipes exhibiting on both QCD (left) and
hadron (right) sidesunconnected(top, separated by dot-dashed red lines) as well as connected (bottom) parts.

+....... + +=

Figure 3: Diagrammatic QCD sum rules forordinarymesons from correlators of two quark-bilinear currents
j, contributing twice (on both sides of those separating dot-dashed red lines) to the unconnected part of Fig. 2.

...+=

Figure 4: Diagrammatic QCD sum rules tailored to the adequate description of tetraquarksby factorizing off
twice the QCD sum rules forordinarymesons of Fig. 3 from the (before never challenged) relations of Fig. 2.

Figure 5 exemplifies contributions of lowest orders inαs to theflavour-reorderingcorrelator of
two not identical tetraquark currentsθ formed by merging two quark bilinears: here, we cannot take
advantage of some cancellation. However, application of the Landau equations [10] reveals that any
contributions of ordersO(α0

s ) [Fig. 5(a)] orO(αs) [Fig. 5(b)] cannot support a tetraquark pole: only
Feynman diagrams of orderO(α2

s ) [Fig. 5(c)] or higher may be considered as tetraquark-phile[6,7].
Following this line of argument and implementing the insights gained, one ends up with anovel

kind of QCD sum rules, tailored to the requirements of tetraquark analyses, of the generic shape [11]

( fābc̄d)
2 exp(−M2τ) =

∫ seff

(ma+mb+mc+md)2
dsexp(−sτ)ρp(s)+power corrections,

fābc̄d fādc̄bexp(−M2τ) =
∫ seff

(ma+mb+mc+md)2
dsexp(−sτ)ρr(s)+power corrections,
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Figure 5: Flavour-reordering Feynman diagrams contributing at strong-coupling orderO(α0
s ) (a),O(αs) (b),

andO(α2
s ) (c) to correlators of four quark-bilinear currentsj (left) as well as, by exerting configuration-space

pair contraction of quark-bilinear currentsj, to correlators of two tetraquark interpolating operatorsθ (right).

involving the variableτ introduced by Borel transformation,τ-dependent [3–5] effective thresholds
seff, and spectral densitiesρp,r in flavour-preserving and flavour-rearranging instances, governed (as
perforce also the power corrections) byexclusively tetraquark-philecontributions to the correlators.

3. Outcome: Traditional Formulations of QCD Sum Rules Require Reconsideration

Inspired by earlier partial results [12–16], we performed athorough analysis [11] offour-quark
singularitiesin the Mandelstam variablesdue to the possible existence oftetraquark polesin Green
functions. Its outcomes give reason to question the intrinsic consistency of investigating multiquark
hadrons by means of traditional QCD sum rules [17,18]: the latter must be adapted to the challenge.

Insights [11] analogous to the above two-point case hold for, e.g., thethree-point correlatorsof
one tetraquark interpolating operator and two quark-bilinear currents, generating the amplitudes for
transitions between a tetraquark and two ordinary mesons, if starting the derivation of the associated
QCD sum rules from Feynman diagrams of the likewise tetraquark-phile type exemplified by Fig. 6.
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Figure 6: Flavour-preserving (left) and flavour-rearranging (right) Feynman diagrams contributing at lowest
tetraquark-phile strong-coupling orderO(α2

s ) to correlators of four quark-bilinear currentsj and, by merging
of just a single pair of currentsj, to correlators of one tetraquark operatorθ and two quark-bilinear currentsj.
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