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We construct electron coherent states in strained graphene immersed in a constant homogeneous
magnetic field which is orthogonal to the sample surface. We consider the situation in which the
membrane is deformed uniformily and uniaxially, avoiding the generation of pseudo-magnetic
fields and solve the Dirac-Weyl equation with an anisotropic Fermi velocity, identifying the ap-
propriate rising and lowering operators. Working in a Landau gauge, we explicitly construct non-
linear coherent states as eigenstates of a generalized annihilation operator with complex eigen-
values which depends on an arbitrary function f of the number operator. In order to describe the
anisotropy effects on these states, we obtain density probability for three different functions f .
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Figure 1: Dirac cones for pristine (dashed gray contour) and uniaxially strained graphene (solid red contour).
For former, the Dirac cones projections on the horizontal plane are circles, while for latter, such projections
are ellipses whose semi-major axis is along either (a) of the px-axis when vx < vy or (b) of the py-axis when
vx > vy. Being precise, when strain is applied the Dirac cones are displaced out from their original positions.

1. Introduction

The physical system of a graphene layer interacting with a uniform magnetic field has been
considered in several works due to its important technological implications [1, 2, 3, 4]. This mate-
rial is characterized because, at the continuum limit, the behavior of its charge carriers (generally
referred to as electrons) mimics that of ultra-relativistic fermions. Thus, its dispersion relation is
linear and the quasiparticles are described by a Dirac-like equation. Several phenomena related to
such pseudo-relativistic behavior have been studied extensively, including when a graphene sample
is mechanical deformed. Therefore, our main interest is to provide a semi-classical description of
the strain effects on electrons in graphene by employing nonlinear coherent states (NLCSs), which
are defined through a nonlinear or f -deformed algebra.

2. Dirac-Weyl equation under strain

Let us start from the anisotropic Dirac-Weyl equation under a homogeneous magnetic field

HDY(x,y) = (vxsxpx + vysypy)Y(x,y) = EY(x,y), (2.1)

where vx = avF and vy = bvF, with a and b being positive real numbers, are the electron velocities in
the directions x and y when a uniform uniaxial strain is applied, and vF is the Fermi velocity (see Fig.
1). Here Y(x,y) = (

y

+(x,y) y

�(x,y) )T and px,y = px,y + eAx,y, where ~p denotes the canonical
momentum while ~A is the vector potential that defines a magnetic field aligned perpendicularly to
the graphene surface. In a Landau gauge, we set ~A = B0x ĵ and ~B = —⇥~A = B0k̂.

Substituting the above expressions in Eq. (2.1), we get two decoupled equations, namely,
"
� d2

dx2 +
w

2
z

4

✓
x+

2k
w

◆2

± 1
2

w

z

#
y

±(x) = e

±2
a y

±(x), (2.2)

where e

±
a = E/(avFh̄), z = vx/vy = a/b and the frequency w

z

= w/z = 2eB0/(z h̄), being w the
cyclotron frequency of electrons in pristine graphene.
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After solving the ODEs in (2.2), it follows that:

E�
0 = 0, E�

n = E+
n�1 =±vFh̄

p
abw n, n = 0,1,2, . . . . (2.3)

where positive (negative) energies correspond to the conduction (valence) band, while the pseudo-
spinor eigenstates turn out to be

Yn(x,y) =
exp(iky)p

2(1�d0n)

 
(1�d0n)yn�1(x)

iyn(x)

!
, n = 0,1,2, . . . , (2.4)

where dmn denotes the Kronecker delta, y

�
n ⌘ yn and y

+
n ⌘ yn�1 are eigenfunctions of the shifted

harmonic oscillator (2.2).

3. Annhilation operator

In order to build nonlinear coherent states in strained graphene, one can define a deformed
annihilation operator Q f given by [5]:

Q�
f =

"
cos(d )

p
N+2p
N+1 f (N +2)q� sin(d ) f (N+2)p

N+1 (q
�)2

�sin(d ) f (N +1)
p

N +1 cos(d ) f (N +1)q�

#
, q

± =
1p
2

✓
⌥ d

dx

+x

◆
, (3.1)

where q

+ = (q�)† and x =
q

w

z

/2(x+2k/w). The action of Q�
f on the eigenstates (2.4) is

Q�
f Yn(x,y) = 2�d1n/2 f (n)exp(id )

p
nYn�1(x,y), n = 0,1,2, . . . , (3.2)

being f (N) a well-behaved function of the number operator N = q

+
q

� and d 2 [0,2p] allows to
consider either diagonal or non-diagonal matrix representation for Q�

f .
Taking into account the generalized creation operator Q+

f = (Q�
f )

†, we obtain the nonlinear
algebra [Q�

f ,Q
+
f ] = diag(W(N + 1), W(N)), where W(N) = (N + 1) f 2(N + 1)�N f 2(N). In the

limit f (N) = 1 we recover the Heisenberg-Weyl algebra, namely, [Q�
f ,Q

+
f ] = I, where I is the

2⇥2 unity matrix.

3.1 Nonlinear coherent states

We can construct NLCSs Y f
a

(x,y) as eigenstates of the operator Q�
f with eigenvalue a 2 C:

Q�
f Y f

a

(x,y) = aY f
a

(x,y), where Y f
a

(x,y) = a0Y0(x,y)+
•

Â
n=1

anYn(x,y). (3.3)

Upon inserting these states into the corresponding eigenvalue equation, we get the following rela-
tions:

a1 f (1) =
p

2ãa0, an+1 f (n+1)
p

n+1 = ãan , (3.4)

with ã = a exp(�id ). Then [5]:

Y f
a

(x,y) =

8
>>>>><

>>>>>:

1p
2exp(|ã|2)�1


Y0(x,y)+

•
Â

n=1

p
2ã

n
p

n!
Yn(x,y)

�
, if f (N +1) = 1,

exp
�
�|ã|2/2

� •
Â

n=0

ã

n

n! Yn+1(x,y), if f (N +1) =
p

Np
N+1̂

,
⇣

|ã|
I1(2|ã|)

⌘1/2 •
Â

n=0

ã

np
n!(n+1)!

Yn+2(x,y), if f (N +2) =
p

N
p

N+1̂p
N+2̂

.

(3.5)

whose probability densities are depicted in the Figure 2.
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Figure 2: Probability density r

a

(x) = |Y f
a

(x,y)|2 for each NLCS in Eq. (3.5) with real eigenvalue a = 6: (a)
f (N +1) = 1, (b) f (N +1) =

p
N/

p
N +1 and (c) f (N +2) =

p
N
p

N +1/
p

N +2. The pristine graphene
case is identified by z = 1 ( ), whereas the deformed graphene case is labeled by z = 1/2 ( ), when
strain is applied along the x- (or zig-zag) direction, and z = 3/2 ( ), when strain is applied along the y-
(or arm-chair) direction. In all these cases, we take B0 = 1/2, w = 1 and k = d = 0.

4. Conclusions

In this work, we have considered a uniform and uniaxially strained graphene membrane im-
mersed in a perpendicular uniform magnetic field, in order to explore the mechanical deformation
effects have in the behavior of the nonlinear coherent states for electrons, which have been obtained
by describing the background field in a Landau gauge. Thus, if z < 1 (vx < vy), the deformation
takes place along the x-direction and the velocity vx decreases. Therefore, as a consequence of the
Heisenberg uncertainty principle, the probability density of the NLCS is larger in comparison with
the opposite case, z > 1 (vx > vy) , in which the strain is applied along the y-direction and the ve-
locity vy decreases (see Fig. 2). On the other hand, the function r

a

(x) of the third family of NLCSs
seems not to be affected by strain in the same way as the other coherent states as a result, we think,
of the function f that defines it. In [5], the occupation number distribution P

a

(n) = |hYn|Y f
a

i|2 is
discussed to analyze this behavior.

It is worth to mention that this physical problem has been generalized and addressed by defin-
ing the external field in the symmetric gauge [6], in order to describe the bidimensional effects of
anisotropy in strained graphene and 2D Dirac materials in general.
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