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1. Introduction

In this talk we review the recent developments of the evaluation of the two-loop virtual correc-

tion to the electron-muon scattering, µe → µe, at Next-to-Next-to-Leading order in QED. These

radiative corrections are relevant for the analysis of the MUonE experiment, recently proposed at

CERN. MUonE aims at the high precision determination of the QED running coupling constant in

the space-like region from the measurement of the differential cross section of the elastic scattering

of high-energy muons on atomic electrons. We focus our discussion on the implementation of the

adaptive integrand decomposition algorithm (AIDA) [1, 2] and the interplay with available tools for

the reduction and computation of multi-loop integrals. Furthermore, we comment on the progress

made towards the renormalisation of the amplitude.

This contribution is organised as follows. In Sec. 2 we briefly remark the main features of the

adaptive integrand decomposition algorithm (AIDA). Then, in Sec. 3, we recall the organisation

to reduce the two-loop amplitude. In Sec. 4, we discuss and summarise all the work done for the

unrenormalised amplitude. The preliminary results towards the UV renormalisation is displayed in

Sec. 5. We finally draw our summary of the talk.

2. Adaptive Integrand Decomposition in a nutshell

In this section, we explain the main features of the Adaptive Integrand Decomposition Algo-

rithm (AIDA) [1, 2]. We remark that this method decomposes the space-time dimension, d = 4−2ε ,

into parallel (or longitudinal) and orthogonal (or transverse) dimensions, d = d‖+d⊥. Parallel and

orthogonal directions show particular properties for topologies with less than five external legs.

In the structure of the Feynman integrals,

I
(ℓ)

i1···in [N ] =
∫

(

ℓ

∏
i=1

dd l̄i

πd/2

)

Ni1···in(l̄i)

∏ j D j(l̄ j)
, (2.1)

loop momenta become

l̄α
i = lα

‖ i +λ α
i , (2.2)

with

l̄α
‖ i =

d‖

∑
j=1

x ji eα
j , λ α

i =
4

∑
j=d‖+1

x ji eα
j +µα

i , λi j =
4

∑
l=d‖+1

xli xl j +µi j . (2.3)

In Eq. (2.2), l‖ i is a vector of the d‖-dimensional space spanned by the external momenta, and λi

belongs the d⊥-dimensional orthogonal subspace. In this parametrisation, all denominators become

independent of the transverse components of the loop momenta.

Let us indicate with z the full set of ℓ(ℓ+9)/2 variables

z ={x‖ i,x⊥ i,λi j}, i, j = 1, . . . ℓ , (2.4)

where x‖ i (x⊥ i) are the components of the loop momenta parallel (orthogonal) to the external

kinematics, the denominators are reduced to polynomials in the subset of variables

τ ={x‖,λi j}, τ ⊂ z, (2.5)
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so that the general r-point integrand has the form

Ii1...ir (τ,x⊥)≡
Ni1...ir(τ ,x⊥)

Di1(τ) · · ·Dir(τ)
. (2.6)

Since numerator and denominators depend on different variables, the adaptive integrand decompo-

sition suggests the following algorithm:

1. Divide: we divide the numerator Ni1...ir(τ ,x⊥) modulo the Gröbner basis Gi1···ir (τ) of the

ideal Ji1···ir (τ) generated by the set of denominators. The polynomial division is performed

be adopting the lexicographic ordering λi j ≪ x‖,

Ni1...ir (τ,x⊥) =
r

∑
k=1

Ni1...ik−1ik+1...ir(τ ,x⊥)Dik(τ)+∆i1...ir (x‖,x⊥) . (2.7)

The Gröbner basis does not need to be explicitly computed, since, with the choice of vari-

ables and the ordering described here, the division is equivalent to applying the set of linear

relations described above.

2. Integrate: Since denominators do not depend on transverse variables, x⊥, we can integrate

the residue ∆i1...ir over transverse directions. This integration is carried out by expressing

∆i1...ir in terms of Gegenbauer polynomials, i.e.,

∆int
i1...ir(τ) =

∫

d(4−d‖)ℓΘ⊥∆i1...ir(τ ,Θ⊥) . (2.8)

Where ∆int
i1...ir

is a polynomial in τ whose coefficients depend on the space-time dimension d.

3. Divide: the structure of the integrated residue suggests a second division. This can be seen

from the dependence ∆int
i1...ir

has on the variables τ . In fact, after applying the division, simi-

larly as in the first step of this algorithm, we get

∆int
i1...ir(τ) =

r

∑
k=1

N int
i1...ik−1ik+1...ir(τ)Dik(τ)+∆′

i1...ir(x‖), (2.9)

where the new residue ∆′
i1...ir

(x‖) can only depend on x‖.

3. µe elastic scattering

Motivated by the new experiment MUonE proposed at CERN [3] that provides a new and

independent determination of the leading hadronic contribution to the muon g-2 [3, 4], we consider

as an application of AIDA, the two-loop reductions of the µe elastic scattering,

e− (−p1) µ− (−p4)→ e− (p2) µ− (p3) , (3.1)

The electron is treated as massless, m2
e = 0, while we retain full dependence on the muon mass,

m2
µ 6= 0. We focus on the spin summed/averaged squared matrix elements,

M(1) = 2Re〈A(0)
eµ |A(1)

eµ 〉 , M(2) = 2Re〈A(0)
eµ |A(2)

eµ 〉 , (3.2)
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Figure 1: Feynman diagrams contributing to the two-loop µe-scattering amplitude.

to obtain the results of the corresponding two-loop amplitude.

Hence, we define the kinematical variables this amplitude depends on to be

s = (p1 + p2)
2 , t = (p2 + p3)

2 , u = (p1 + p3)
2 =−s− t +2m2

µ . (3.3)

For the calculation of the two-loop amplitude of the µe elastic scattering, we have to evaluate

the Feynman diagrams of Fig 1. Since we are interested in the reduction of the integrand by means

of AIDA, we apply the algorithm divide-integrate-divide as described in the previous sections.

These steps can be summarised as follows.

1. Identify parent topologies and group diagrams:

{

{1,46},{3,5},{6,35,41,67},{7},{16},{17,8,36,38,50,52,54,58},{18,60,65},{19},
{20},{21,14,51,56},{22},{23,57},{24,55,59},{25,2,4,9,11,13,34,47,66},
{26,10,12,15,37,39,40,43,44,48,68,69},{27},{28},{29,61,62},{30,64},{31},
{32,63},{33},{42},{45},{49},{53}

}

. (3.4)
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2. Generate cuts: let us focus on the sixth group, whose parent topology

♣✸

♣✹

♣✷

♣✶

✼

�

✁

✂

✻✺

✄

, (3.5)

gives contribution to the following cuts

{

{{1,6},{2,4,5,7},{3}},{{6},{2,4,5,7},{3}},{{1,6},{4,5,7},{3}},{{1,6},{2,4,5,7}},
{{1,6},{2,5,7},{3}},{{1,6},{2,4,7},{3}},{{1},{2,4,5,7},{3}},{{1,6},{2,4,5},{3}},
{{6},{4,5,7},{3}},{{6},{2,4,5,7}},{{6},{2,5,7},{3}},{{6},{2,4,7},{3}},{{2,4,5,7},
{3}},{{6},{2,4,5},{3}},{{1,6},{4,5,7}}, . . . ,{{1},{3}},{{1},{2}}

}

. (3.6)

4. Organise cuts in jobs: in order to consider the full contribution of all possible diagrams,

there is a subtlety w.r.t. the one-loop case, which relies on the treatment of the diagrams that

contain squared propagators, e.g. diagrams 36-58 in Fig. 1. For instance, the contribution to

the cut {{1,6},{2,4,5},{3}} with linear propagators gets contributions from

{

N
{{1,6},{2,4,5,7},{3}}
{{1,6},{2,5,7},{3}} ,N

{{1,6},{2̇,5,7},{3}}
{{1,6},{2,5,7},{3}} ,N

{{1,6},{2,5,7̇},{3}}
{{1,6},{2,5,7},{3}}

}

, (3.7)

where superscripts with dots represent squared propagators.

4. Discussion on the integrand reduction of eµ

Let us briefly discuss a few features of the two-loop calculation we are performing w.r.t. the

one-loop case. At the one-loop level in AIDA’s framework, as described in [5 – 7], it is possible

to reduce the amplitude or any one-loop object to a linear combination of the standard master

integrals, i.e. boxes, triangles, bubbles and tadpoles, where all of them are known either analytically

or numerically. At the two-loop level, on the contrary, the inclusion of irreducible scalar products,

not present at one-loop, does not allow to end up with scalar integrals whose numerator is 1. Then,

relation at integral level, given by the symmetry of the latter, are used in order to reduce the number

of integrals to evaluate.

The reduction of integrals is known as integration-by-parts (IBP) identities [8 – 10]. Specifi-

cally for the calculation we are performing, we manage to reduce the number of integrals to evaluate

from O(10000)→O(100). Due to the flexibility of AIDA, it is straightforward to interface the out-

put the latter generates to later pass to any software that generates IBPs. In fact, These two kind of

reductions, integrand and IBP, are done independently. One just needs information of the external

kinematics and the structure of the topology to reduce. For our purposes we use REDUZE [11] and

KIRA [12].

Furthermore, for processes at multi-loop level, one needs to deal with the kind of topology,

planar or non-planar. The latter was not present at one-loop level. Despite the proliferation of terms

appearing at two-loop level, there has been an enormous effort for computing the integrals needed

to generate the, to begin with, unrenormalised amplitude. In fact, their calculation has been split

4
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into two contributions. i) The calculation of the integrals originated from the planar topologies [13]

and ii) the ones for non-planar topologies [14].

From the above discussion, we claim that the evaluation of the unrenormalised amplitude is

at hand. What is next? The UV renormalisation of the latter. In order to do it, we renormalise

as follows. We renormalise in a scheme where fermion masses are pole masses and the gauge

coupling is in the MS scheme. To this end, we renormalise fields and couplings in MS except for

the fermion masses, for which we would use the pole mass prescription, and to separately include

finite Lehmann, Symanzik and Zimmermann (LSZ) factors for the external legs [15].

5. Preliminary results on the UV renormalisation

!!"#$ !!"#% !!"#! !!"!& !!"!' !!"!$
(

)!!

#!!!

#)!!

%!!!

%)!!

*!!!

�+"!%#

!!"#$ !!"#% !!"#! !!"!& !!"!' !!"!$ !!"!%
(

!$!!!!

!%!!!!
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�)"!##
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#$
!!"#$ !!"#% !!"#! !!"!& !!"!' !!"!$ !!"!%

(
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)!!!!
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#)!!!!

�*"!#
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#$

Figure 2: Results for the UV renormalised diagram 58.

In this section, we display the first results towards the renormalisation of the scattering ampli-

tude eµ → eµ at two-loop level. The very first exercise we do is to renormalise the diagram 58 of

Fig. 1, in which we use this kinematics:

√
s = 0.40554 GeV , m = 105.6583745 MeV ,

scan over tmin ≤ t < 0 , tmin = 0.142893 GeV2 .

With the on-shell renormalisation procedure we cancel the leading pole 1/ε3, leaving the next-to-

leading poles, whose behaviour is shown in Fig. 2.

6. Conclusions

We discussed the calculation of the two-loop scattering amplitude eµ → eµ , where we re-

marked the main features that were done at integrand and integral level. On top of it, we showed

preliminary results toward the complete calculation of the renormalised amplitude.

5



P
o
S
(
E
P
S
-
H
E
P
2
0
1
9
)
6
7
6

µ − e scattering amplitude at NNLO in QED William J. Torres Bobadilla

Acknowledgments

This work is supported by the Spanish Government (Agencia Estatal de Investigación) and

ERDF funds from European Commission (Grants No. FPA2017-84445-P and SEV-2014-0398),

Generalitat Valenciana (Grant No. PROMETEO/2017/053), Consejo Superior de Investigaciones

Científicas (Grant No. PIE-201750E021), the COST Action CA16201 PARTICLEFACE and the

“Juan de la Cierva Formación” program (FJCI-2017-32128).

The Feynman diagrams depicted in this paper were generated using FEYNARTS [16].

References

[1] P. Mastrolia, T. Peraro, and A. Primo JHEP 08 (2016) 164, [1605.03157].

[2] P. Mastrolia, T. Peraro, A. Primo, and W. J. Torres Bobadilla PoS LL2016 (2016) 007,

[1607.05156].

[3] G. Abbiendi et al. Eur. Phys. J. C77 (2017), no. 3 139, [1609.08987].

[4] C. M. Carloni Calame, M. Passera, L. Trentadue, and G. Venanzoni Phys. Lett. B746 (2015) 325–329,

[1504.02228].

[5] W. J. Torres Bobadilla PoS LL2018 (2018) 036.

[6] P. Mastrolia, M. Passera, A. Primo, U. Schubert, and W. J. Torres Bobadilla EPJ Web Conf. 179

(2018) 01014.

[7] W. J. Torres Bobadilla PoS RADCOR2017 (2018) 082, [1801.03010].

[8] F. V. Tkachov Phys. Lett. B100 (1981) 65–68.

[9] K. G. Chetyrkin and F. V. Tkachov Nucl. Phys. B192 (1981) 159–204.

[10] S. Laporta Int. J. Mod. Phys. A15 (2000) 5087–5159, [hep-ph/0102033].

[11] A. von Manteuffel and C. Studerus 1201.4330.

[12] P. Maierhfer, J. Usovitsch, and P. Uwer Comput. Phys. Commun. 230 (2018) 99–112,

[1705.05610].

[13] P. Mastrolia, M. Passera, A. Primo, and U. Schubert JHEP 11 (2017) 198, [1709.07435].

[14] S. Di Vita, S. Laporta, P. Mastrolia, A. Primo, and U. Schubert JHEP 09 (2018) 016, [1806.08241].

[15] H. Lehmann, K. Symanzik, and W. Zimmermann Il Nuovo Cimento (1955-1965) 1 (Jan, 1955)

205–225.

[16] T. Hahn Comput. Phys. Commun. 140 (2001) 418–431, [hep-ph/0012260].

6


