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Determining the QCD Coupling αs(Q2) at all Momentum Scales

The QCD running coupling αs(Q2) sets the strength of the interactions of quarks and gluons
as a function of the momentum transfer Q. The dependence of the coupling at both small and high
momenta is needed to describe hadronic interactions at both long and short distances.

As Grunberg has shown [1], the QCD running coupling can be defined at all momentum scales
from a perturbatively calculable physical observable. A particularly useful choice is the effective
coupling αs

g1
(Q2), which is defined from Bjorken sum rule and is well measured [2]. At high

momentum transfer, such “effective charges" satisfy asymptotic freedom, obey the usual pQCD
renormalization group equations, and can be related to each other without scale ambiguity by com-
mensurate scale relations [3].

The “dilaton" soft-wall modification of the AdS5 metric e+κ2z2
, together with LF holography,

predicts the functional behavior of the running coupling in the small Q2 nonperturbative domain [4]:
αs

g1
(Q2) = πe−Q2/4κ2

. Measurements of αs
g1
(Q2) are remarkably consistent [2] with the Gaussian

form predicted by AdSQCD; the best fit gives κ = 0.513±0.007 GeV. See Fig. 1.
Deur, de Téramond, and I [4, 5, 6] have shown how the parameter κ , which determines the

mass scale of hadrons and Regge slopes in the zero quark mass limit [6], can be connected to
the mass scale Λs controlling the evolution of the QCD coupling in the perturbative domain. The
high momentum transfer dependence of the coupling αg1(Q2) is predicted by pQCD. The matching
of the high and low momentum transfer regimes of αg1(Q2) – both its value and its slope – then
determines a scale Q0 = 0.87±0.08 GeV which sets the interface between perturbative and nonper-
turbative hadron dynamics. This connection can, in fact, be done for any choice of renormalization
scheme, such as the MS scheme.

The result of this perturbative/nonperturbative matching is an effective QCD coupling defined
at all momenta. The predicted value of ΛMS = 0.339± 0.019 GeV from this analysis agrees well
the measured value [7] ΛMS = 0.332± 0.017 GeV. These results, combined with the AdS/QCD
superconformal predictions [8] for hadron spectroscopy, allow one to compute hadron masses in
terms of ΛMS: mp =

√
2κ = 3.21 ΛMS, mρ = κ = 2.2 ΛMS, and mp =

√
2mρ , meeting a challenge

proposed by Zee [9]. The mass scale κ underlying confinement and hadron masses can thus be
connected to the parameter ΛMS in the QCD running coupling by matching the nonperturbative
prediction to the perturbative QCD regime.

We have also proposed that the value of Q0, which marks the interface of nonperturbative
and perturbative QCD, can be used to set the factorization scale for DGLAP evolution of hadronic
structure functions and ERBL evolution of distribution amplitudes [10]. We have also computed
the dependence of Q0 on the choice of the effective charge used to define the running coupling
and the renormalization scheme used to compute its behavior in the perturbative regime. The use
of the scale Q0 to resolve the factorization scale uncertainty in structure functions and fragmen-
tation functions, in combination with the scheme-independent principle of maximum conformality
(PMC) [11] for setting renormalization scales, can greatly improve the precision of pQCD predic-
tions for collider phenomenology.

The combined approach of light-front holography and superconformal algebra [6] also pro-
vides insight into the origin of the QCD mass scale and color confinement. A key observation is
the remarkable dAFF principle [12] which shows how a mass scale can appear in the Hamiltonian
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Figure 1: Top: Comparison of the predicted nonperturbative coupling, based on the dilaton exp(+κ2z2)

modification of the AdS5 metric, with measurements of the effective charge αs
g1
(Q2), as defined from the

Bjorken sum rule. Bottom: Prediction from LF Holography and pQCD for the QCD running coupling
αs

g1
(Q2) at all scales. The magnitude and derivative of the perturbative and nonperturbative coupling are

matched at the scale Q0. This matching connects the perturbative scale ΛMS in the MS scheme to the
nonperturbative mass scale κ =

√
λ , the mass scale which underlies hadronic masses in QCD. See Ref. [6].
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and the equations of motion while retaining the conformal symmetry of the action. When one ap-
plies the dAFF procedure to chiral QCD, a mass scale κ appears which determines universal Regge
slopes, hadron masses in the absence of the Higgs coupling, and the mass parameter underlying the
Gaussian functional form of the nonperturbative QCD running coupling: αs(Q2)∝ exp−(Q2/4κ2).
As seen in Fig. 1, this prediction is in remarkable agreement with the effective charge determined
from measurements of the Bjorken sum rule.

The potential which underlies color confinement in the effective LF Hamiltonian for the qq̄
Fock state of mesons is simply U(ζ 2) = κ4ζ 2, a harmonic oscillator potential in the frame-invariant
light-front radial variable ζ 2 = b2

⊥x(1− x). This confinement potential also underlies the spec-
troscopy and structure of baryons and tetraquarks [6]. The parameter κ is not determined in abso-
lute units such as MeV; however, the ratios of mass parameters such as mp/mρ =

√
2 are predicted.

The same potential can also be derived from the anti–deSitter space representation of the conformal
group if the AdS5 is action is modified in the fifth dimension z by the dilaton e+κ2z2

. This correspon-
dence is based on light-front holography [13], the duality between dynamics in physical space-time
at fixed LF time and five-dimensional AdS space. The predicted light-front wavefunctions can also
be used to model “hadronization at the amplitude level" [14].

The Thrust Distribution in Electron-Positron Annihilation using the Principle of
Maximum Conformality

The Principle of Maximum Conformality (PMC) [11, 15, 16, 17, 18] provides a rigorous,
systematic way to eliminate renormalization scheme-and-scale ambiguities for perturbative QCD.
Since the PMC predictions do not depend on the choice of the renormalization scheme, PMC scale-
setting satisfies the principles of renormalization group invariance [19, 20].

The PMC provides the underlying principle for extending the Brodsky-Lepage-Mackenzie
(BLM) scale-setting method [21] to all orders in pQCD. The essential step is to identify the β

terms at each order of the pQCD series. The PMC scales are fixed at every order in pQCD by
absorbing the β terms that govern the behavior of the running coupling via the renormalization
group equation (RGE). The divergent renormalon terms disappear, and thus the convergence of
the pQCD series is greatly improved. The PMC method also sets the renormalization scales for
observables that depend on several invariants. The number of active quark flavors n f is set at each
order, matching the virtuality of the scattering process. The PMC reduces in the Abelian limit,
NC→ 0 [22], to the standard Gell-Mann-Low method [23].

The thrust (T ) variable [24, 25] is a frequently studied three-jet event shape observables; it is
defined as

T = max
~n

(
∑i |~pi ·~n|

∑i |~pi|

)
, (1)

where the sum runs over all particles in the final state, and ~pi denotes the three-momentum of
particle i. The unit vector ~n is varied to define the thrust direction ~nT by maximizing the sum on
the right-hand side.
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Figure 2: The PMC scales at LL and NLL accuracy for the thrust distribution at
√

s = mZ.

At the center-of-mass energy
√

s, the differential distribution for thrust variable τ = (1−T )
for renormalization scale µr =

√
s≡ Q can be written as

1
σ0

dσ

dτ
= A(τ)as(Q)+B(τ)a2

s (Q)+O(a3
s ), (2)

where as(Q) = αs(Q)/(2π), σ0 is tree-level hadronic cross section. The A(τ), B(τ), ... are per-
turbative coefficients. The experimentally measured thrust distribution is normalized to the total
hadronic cross section σh,

1
σh

dσ

dτ
= Ā(τ)as(Q)+ B̄(τ)a2

s (Q)+O(a3
s ). (3)

The perturbative coefficients Ā(τ) = A(τ), and B̄(τ) = B(τ)− 3/2CFA(τ), etc., and their general
renormalization scale µr dependence Ā(τ,µr), B̄(τ,µr) can be restored from the RGE.

In this section, I will review the results of the recent application [26] of PMC scale setting to
the thrust distribution by Wang, Wu, de Giustino, and myself. The PMC scale is fixed by absorbing
the βi-terms into the running coupling; it is itself a perturbative expansion series in αs and in
general shows fast pQCD convergence. A crucial point, as first noted by Gehrmann, Häfliger and
Monni [27], is that the pQCD renormalization scale is not a constant; it depends explicitly on the
thrust T .

In our analysis for the thrust distribution we determine the PMC scale at NLL level by using
the pQCD predictions given in Refs. [28, 29]. The inclusion of the NNLO correction only slightly
changes the PMC scale determined at NLO level. The PMC scale shows fast pQCD convergence,
as shown explicitly in Fig. 2.
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Figure 3: The thrust differential distributions using the conventional (Conv.) and PMC scale settings [26].
The dot-dashed, dashed and dotted lines are the conventional results at LO, NLO and NNLO [28, 29],
respectively. The solid line is the PMC result [26]. The bands for the conventional theoretical predictions
are obtained by varying µr ∈ [mZ/2,2mZ]. The PMC prediction eliminates the renormalization scale µr

uncertainty. Its error band is obtained by using αs(mZ) = 0.1181±0.0011 [31]. The experimental data are
taken from ALEPH [32], DELPHI [33], OPAL [34], L3 [35], and the SLD [36].

The renormalization scale using conventional scale-setting is simply set at µr = mZ. The PMC
scale, in contrast, is not a single value, but it monotonically increases with (1−T ), reflecting the
virtuality of the QCD dynamics. The PMC predictions are in excellent agreement with measure-
ments.

The PMC gives the correct physical behavior of the scale and is bounded in the two-jet region.
In addition, the number of active flavors n f changes with (1−T ) according to the PMC scale. As
the argument of the αs approaches the two-jet region, the pQCD theory becomes unreliable and
non-perturbative effects must be taken into account. One can adopt the predictions from light-front
holographic QCD [5] to determine αs(Q2) in the low scale domain. The physical behavior of the
scale for three-jet processes has also been obtained in Refs. [37, 27]. The soft collinear effective
theory determines the thrust distribution at different energy scales and also shows that the two-jet
region is affected by non-perturbative effects [30].

A remarkable advantage of using the PMC scale setting is that since the PMC scale varies
with (1−T ), we can extract directly the strong coupling αs over a wide range of scales using the
experimental data at single center-of-mass-energy,

√
s = mZ. In this case we have used the most

precise data from ALEPH [32]. We have calculated the thrust differential distribution at each bin
corresponding to the bins of the experimental data. We can then extract the αs at different scales
bin-by-bin from the comparison of PMC predictions with experimental data. The extracted αs are
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Figure 4: The extracted αs(Q2) in the MS scheme from the comparison of PMC predictions with ALEPH
data [32] at

√
s = mZ. The error bars are from the combination of the experimental and theoretical errors.

The three lines are the world average evaluated from αs(mZ) = 0.1181±0.0011 [31].

explicitly presented in Fig. 4. It shows that in the scale range of 3.5 GeV < Q < 16 GeV (corre-
sponding (1−T ) range is 0.05 < (1−T )< 0.29), the extracted αs are in excellent agreement with
the world average evaluated from αs(mZ) [31]. The pQCD calculation corresponds to a parton-level
distribution, while the experimental measurements are the hadron-level. Some previous extractions
of αs have applied Monte Carlo generators to correct the effects of hadronization. In our analysis,
we have adopted a method similar to [38] in order to extract αs.

In the case of conventional scale setting, the renormalization scale is simply guessed and set at
µr =

√
s=mZ, and thus only one value of αs at scale mZ can be extracted. The resulting predictions

does not fit the measured thrust distribution, and it is incorrect for the QED analog. After using
the PMC, we obtain a self-consistent determination of αs at different scales over a wide range of
the thrust distribution. Moreover, since the PMC predictions eliminate the renormalization scale
uncertainty, the extracted values for αs(Q2) are not plagued by any uncertainty in the choice of
µr. Thus, remarkably, the PMC provides a new way to determine the running of αs(Q2) and verify
asymptotic freedom from the measurement of jet distributions in e+e− annihilation at a single
energy of

√
s.

In conclusion, the thrust variable in e+e− annihilation provides an ideal platform for testing
the QCD. In the case of the conventional scale setting, the predictions are scheme-and-scale de-
pendent, and do not match the experimental results; the extracted coupling constant deviates from
the world average. In contrast, after applying PMC scale-setting, we obtain a comprehensive and
self-consistent analysis for the thrust measurements, including both the differential distributions

6
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and the mean values. The PMC scale reflects the virtuality of the QCD dynamics, and it correctly
sets the number of active quark flavors n f at every order as a function of the thrust. It allows one
to determine αs(Q2) at different momentum scales by comparing the PMC predictions with the
experiment measured at a single center-of-mass-energy

√
s.

This analysis shows the importance of correct renormalization scale-setting. The PMC method
rigorously eliminates an unnecessary theoretical uncertainty for all pQCD predictions, and it has
general applicability for all precision tests of QCD. A recent review of the PMC is given in
Ref. [39].

The work of SJB is supported in part by the Department of Energy under contract DE-AC02-
76SF00515. This contribution (SLAC-PUB-17456) is based on collaborations with Alexandre
Deur, Guy de Téramond, Hans Guenter Dosch, Matin Mojaza, Sheng-Quan Wang, Xing-Gang
Wu, and Leonard di Giustino.
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