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αs from non-strange hadronic τ decays Santiago Peris

The αs determination from hadronic τ decay usually relies on Finite Energy Sum Rules
(FESRs). A FESR analysis takes advantage of the analyticity of the current-current correlator

Πµν(q) = i
∫

d4xeiqx〈0|T
{

Jµ(x)J†
ν(0)

}
|0〉 (1)

=
(
qµqν −q2gµν

)
Π

(1)(q2)+qµqνΠ
(0)(q2)

=
(
qµqν −q2gµν

)
Π

(1+0)(q2)+q2gµνΠ
(0)(q2) ,

where Jµ stands for the non-strange V or A current, uγµd or uγµγ5d, and the superscripts (0) and
(1) label spin, to obtain the following identity [1]

1
s0

∫ s0

0
dsw(s)ρ

(1+0)
V/A (s) = − 1

2πi s0

∮
|s|=s0

dsw(s)Π
(1+0)
V/A (s) , (2)

which is valid for any s0 > 0 and any weight w(s) analytic inside and on the contour depicted
in Fig. 1. The combinations Π(1+0)(q2) and q2Π(0)(q2) are convenient because they are free of
kinematic singularities. In Eq. (2), ρ(1+0)(s) = 1

π
ImΠ(1+0)(s) designates the spectral function and

s = q2. From now on, we will suppress the index (1+0).

Re q2-s0

Figure 1: Contour used in the derivation of the FESRs, Eq. (2) .

As it stands, Eq. (2) is exact if for Π(s) one is using the exact function. When s0 is large
enough, it begins to make sense to replace this function by its OPE representation from which it
may be possible to extract the value of αs

1. As the OPE is expected to be asymptotic, and breaks
down on the Minkowski axis, there will be a nonvanishing difference between the exact and the
OPE representations. We will denote this difference by ΠDV (s), where DV stands for Duality
Violations (DVs). Explicitly,

Π(s) = ΠOPE(s)+ΠDV (s) . (3)

In a hypothetical world in which the OPE converged, DVs would vanish by definition.
Using Eq. (3), one may rewrite Eq. (2) conveniently as [2]

1
s0

∫ s0

0
dsw(s)ρ

exp(s) =− 1
2πis0

∮
|z|=s0

dzw(z)Π
(αs)
OPE(z)−

1
s0

∫
∞

s0

dsw(s)
1
π

ImΠDV (s) , (4)

1Here, we will consider the perturbative series as the contribution from the unit operator to the OPE.

1



P
o
S
(
A
L
P
H
A
S
2
0
1
9
)
0
1
8
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where we have indicated that ρexp(s) is to be obtained from experimental data and Π
(αs)
OPE(s) contains

the value of αs to be determined. In practice w(s) will be taken to be a polynomial. At this point
several important remarks are in order.

First, as a consequence of the residue theorem, a monomial w(s) = (s/s0)
N produces an OPE

contribution (−1)NC2N+2/sN+1
0 to the right-hand side of Eq. (4), where the coefficients C2N+2 are

related to the condensates of dimension 2N + 2 (see also the discussion below). The C2N+2 are
typically not known a priori but can be determined using Eq. (4) if αs and ImΠDV (s) have been
previously determined. For a given set of experimental data ρexp(s), the presence of DVs affects
any C2N+2 determined in this way, except in the case N = 0 (w(s) = 1) where C2 vanishes for
the V and A correlators2. Second, although ImΠDV (s) is certainly non-zero as a result of the
non-convergence of the OPE on the Minkowski axis, its precise form is in principle unknown. In
early τ-decay analyses this problem was dealt with by assuming that the use of polynomials w(s)
with zeros at s = s0 of sufficiently high order (“pinching”) would provide sufficient suppression
of contributions from the region near the Minkowski axis to allow DVs to be safely neglected.
This assumption is predicated on the expectation that ΠDV will be maximal in the vicinity of the
Minkowski axis,[3] where, given that it represents a contribution missed by the asymptotic OPE,
one expects ImΠDV (s) ∼ e−γs× (oscillation), in analogy to the way the asymptotic renormalon
series misses a non-perturbative term of order e−b/αs . Third, the use of pinching, regrettably, poses
a problem: a polynomial with a high-order zero necessarily also has a high degree, and a high-
degree polynomial produces contributions from C2N+2 with large N to the right-hand side of the
FESR (4). Such contributions are not known (unless DVs and αs have somehow already been
determined, as remarked above). This leads to a “no-go" theorem [4, 5]:

“It is not possible to simultaneously suppress DV and high-dimension condensate contribu-
tions.”

In order to avoid the contribution from C2N+2 with large N, one could use a low-degree poly-
nomial, but this could then fail to provide enough pinching to be able to safely neglect DVs. In
summary, one way or the other, the inclusion of DVs in Eq. (2) is unavoidable. This requires a
concrete parametrization of ImΠDV (s) which then allows its parameters to be determined with the
help of Eq. (4), through a fit in an appropriate window of large-enough s0.

Recently, such parametrization has been obtained [6]. The assumptions needed to derive it
are rather mild: First, an asymptotic Regge spectrum for mesons at Nc = ∞ and, second, a con-
stant width-over-mass ratio in the limit that the radial excitation number → ∞, for Nc = 3. Both
these assumptions are true in QCD in two dimensions (where all these properties can actually be
computed), are supported by the string picture of hadrons [7], and are in agreement with phe-
nomenology [8]. The resulting expression for ImΠDV (s) then reads

1
π

ImΠDV (q2)∼ e
−2π

a
Nc

q2

Λ2
QCD sin

[
2π

Λ2
QCD

(
q2− c−b log

q2

Λ2
QCD

)](
1+O

(
1

Nc
;

1
q2 ;

1
logq2

))
,

(5)
where ΛQCD ∼ 1GeV is the characteristic QCD scale, related to the string tension. The result (5)
is in accord with our expectations for an asymptotic OPE described above. Apart from a mild

2The u and d quark masses are very small and, consequently, neglected.
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logarithmic dependence, modulated by the constant b and subleading at large q2, this form can be
conveniently expressed as [9]

1
π

ImΠDV (q2) = e−δ−γq2
sin
(
α +β q2) , q2� Λ

2
QCD , (6)

and this is, in fact, the parametrization we have used in our analyses. We emphasize that, in
principle, a different set of parameters δV,A,γV,A,αV,A and βV,A should be used for the V and A
channels since they are related to the resonance spectrum.

This expression (6) was not available for use in the first τ decay determinations of αs [10,
11, 12]. These pioneering analyses employed a strategy, which we will refer to as the truncated-
OPE strategy (tOPE), in which pinched weights were used and both DVs and high-dimension OPE
contributions were neglected. Recent examples of the continued use of this strategy may be found
in Refs. [13, 14].

The tOPE strategy proceeds as follows. A set of five polynomials,

wkl(y) = (1+2y)(1− y)2+k yl , y = s/s0, s0 = m2
τ , (7)

with (k, l) ∈ {(0,0),(1,0),(1,1),(1,2),(1,3)}, is chosen, and the corresponding set of weighted
spectral integrals, evaluated at s0 =m2

τ only, used to extract four parameters: αs and the coefficients
CD=4,6,8. Since these polynomials reach up to degree 7 in s, the FESR (4), in principle, receives
contributions also from the CD with D = 10, 12, 14 and 16, which, because they are unknown,
are neglected. This neglect is predicated on an assumed O

(
ΛD

QCD/mD
τ

)
suppression of dimension

D OPE contributions. In other words, the OPE is effectively treated as if it were convergent at
the scale s = m2

τ . The term with DVs in Eq. (4) is also neglected. While this strategy may have
been reasonable in the early work of Refs. [10, 11, 12], when the error in the extracted αs was
∼ 10− 15%, it is clear that, as time goes by, and errors decrease, the assumptions underpinning
this approach need to be checked and, if necessary, the method needs to be revised.

Partly with this idea in mind, Ref. [14] has recently generalized the tOPE strategy by inves-
tigating a variety of alternate polynomial combinations, obtaining, in all cases, consistent results
with good-quality fits. However, although the analysis of Ref. [14] showed no obvious sign that the
results obtained might be unreliable and the value of αs extracted might be polluted by a systematic
error that the variations studied might not be capable of identifying, all these results, as shown in
Ref. [15], do contain a hidden ∼+6% systematic error in the extracted value of αs(m2

τ). For a full
account of this systematic error, we refer to Ref. [15]. Here, we will just report on one particularly
clean test that illustrates the point.

The test works as follows. We consider a model designed to closely match the actual exper-
imental spectral data, but constructed to have an input value of αs(m2

τ), αs(m2
τ)

f ake = 0.312, and
corresponding chosen values for the DV parameters3. We then generate a set of fake data for the
V +A spectral function4, using exactly the same binning and the same correlations as in the actual
experiment, by letting the data points fluctuate according to a multivariant Gaussian distribution
defined with the experimental covariance matrix.5 An example of the resulting spectral distribution

3See Ref.[15], for more details.
4This is the channel that Ref. [14] considers to be optimal for the reliability of the tOPE strategy.
5The fake data is generated only for s0 ≥ 1.55GeV2, which is the value we obtained in our true-data fits for the

onset of the asymptotic DV expression (6). Below this s0, the two data sets, fake and true, are identical.
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Figure 2: Left: V +A fake data, generated as described in the text, as a function of s. Right: True ALEPH
data [13] as a function of s. The fake data has been generated for s ≥ 1.55GeV2; below this value the two
sets of data are identical.

is shown in Fig. 2. The point is that, if the tOPE strategy were reliable, it should be able to repro-
duce the input value of αs(m2

τ)
f ake from the fake data set, within errors, and in spite of the neglect

of higher-dimension OPE contributions and the absence of a representation of integrated DVs in
the theoretical form it assumes.

However, when we use the sets of polynomials suggested in Ref. [14] in fits to the fake data,
we always find the value of αs(m2

τ) to be overestimated by ∼ +0.02, a systematic error of +6%,
which, in terms of the statistical errors of these fits, amounts to 5–7σ . Therefore, the tOPE strategy
clearly fails. One might think that the tOPE could have also reproduced the right result, had the
fake data set been generated without DVs. Such fake data, however, would not be able to reproduce
the residual oscillations present even in the V +A spectral distribution (see below). And the fact
remains that the tOPE strategy, in ignoring higher-dimension terms in the OPE without justification,
and failing to detect the presence of residual DVs in the fake data case, can produce a systematic
shift in the extracted value of αs whose presence cannot be exposed by looking at the variation
in the output αs produced when the tOPE analysis is performed using the various polynomial set
choices considered in Ref. [14].

It has been argued [14], referring to the left panel of Fig. 3, that the spectral function in the
V + A channel is so flat at high s as to be free from DVs. This argument, however, is rather

4
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Figure 3: Left: V +A spectral function. Right: V +A spectral function, after the parton model contribution
has been subtracted. The black dashed curve is the result of perturbation theory.

misleading. The right panel in Fig. 3 shows the same spectral function, but now with the (αs-
independent) parton-model contribution subtracted. The black dashed curve in this panel shows
the corresponding result from perturbation theory. One sees that, even at s = 2GeV2, the data
points agree, within errors, with the parton model. In other words, the αs-dependent part of the
perturbative contribution cancels against the DV oscillation at that point. There is no sense in which
the DVs are small relative to the αs-dependent perturbative contributions, from which the value of
αs is extracted, and, therefore, there is no sense in which the DVs may be reliably neglected. A
similar effect is seen at s' 2.2GeV2 but, this time, DVs and the αs-dependent part of perturbation
theory add up, rather than cancel each other. Again, the size of DVs is comparable to that of the
αs-dependent perturbative contributions. Notice that these data are very correlated, so the fact that
a group of three data points, with central values very close together at s' 2.2GeV2, are above the
perturbative curve while another group of three data points, again very close together at s' 2GeV2,
are below the perturbative curve is difficult to explain as a fluctuation in the data, and not as the
sign of a true residual oscillation. Above s = 2.5GeV2 the errors are too large to tell. Furthermore,
there is no doubt that both V and A separately contain DV oscillations, so the safest assumption is
that V +A also has them, even if they are smaller for V +A than for the individual V and A cases. At
any rate, smaller or not, we have seen that they can easily affect the extraction of αs, as illustrated
in the fake-data test discussed above. Reference [15] contains more details of the different tests
one may carry out, all of them leading to the conclusion that the tOPE strategy is unreliable, with

5
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an associated systematic error of ∼+0.02 in the value of αs(m2
τ).

Given this state of affairs, we have recently proposed [5, 16] a different strategy that takes DVs
into account explicitly, parametrized as in Eq. (6), and employs the 3 polynomials (to be considered
together or separately)

w0 = 1 , w2 = 1− y2 and w3 = (1− y)2(1+2y) . (8)

The αs value and the two coefficients C6,8 (which are the only OPE coefficients contributing to
the w2 and w3 FESRs) are then fit using the integrated spectral data in a window of s0 extending
from m2

τ down to a lower value determined by the fit itself. The choice of polynomials is dictated
by a desire to avoid, first, contributions from high-dimension terms in the OPE and, second, the
use polynomials with a term linear in y (which receive a contribution from C4, associated with the
gluon condensate) since model studies suggest that perturbation theory behaves poorly for such
weights, whether with the FOPT or the CIPT choice for the scale µ [17]6.

A large variety of different fits using Eq. (4) and the three polynomials above, and employing
the V channel alone, or the V and A channels combined, were carried out in Ref. [16], to which we
refer for more details. The results obtained were consistent in all cases, not only for αs but also for
the C6,8 coefficients.

In Fig. (4) we show how the associated V and A spectral functions are described by our
parametrization in Eq. (6) at high s, where the asymptotic DV form is expected to apply. A number
of additional consistency checks were also carried out; for example, the first Weinberg sum rule.
In Fig. 5 we show the result of this sum rule, i.e.,∫

∞

0
ds (ρV (s)−ρA(s))−2 f 2

π = 0 , (9)

as a function of the point ssw at which one switches from the experimental data to the corresponding
theoretical description. The left panel shows the case without DVs in the theoretical description; in
this case, the experimental data switches to zero since the perturbative contribution cancels in the
V −A difference. The right panel shows the case where the DV parametrization (6) is employed in
the theoretical description, which, through the second term on the righthand side of Eq. (4), allows
us to extend the upper limit in the sum rule to infinity. It is clear that taking DVs into account
constitutes an improvement.

Other tests were also considered. Two tests we find particularly interesting probe the idea of
truncating the OPE. Using again the polynomials wkl in Eq. (7), the left panels of Fig. 6 show the
example of w11 and w13 as a function of s0, as obtained with the tOPE strategy. We emphasize that,
within this strategy, fits are being done solely at s0 = m2

τ . Therefore, it is not surprising that the data
agree rather well with the theory curve at this s0. However, the theory description quickly departs
from the data as soon as s0 is lowered, which is a clear sign that the s0 scaling on the theory side of
the corresponding FESR is not correct. This is a consequence of neglecting the higher-dimension
terms in the OPE that contribute to these sum rules. For comparison, we also show the same result
once DVs are taken into account, and the corresponding OPE coefficients have been determined

6Fixed-order perturbation theory (FOPT) refers to the choice of the scale µ2 = s0, where s0 is the radius of the
contour in Eq. (4). Contour-improved perturbation theory (CIPT) refers to the choice µ2 = z, where z is the complex
integration variable along the contour in Eq. (4).

6
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Figure 4: Left: V spectral function, together with the parton model result (dashed black curve) and the
result from the DV parametrization (6) obtained from Eq. (4) (blue curve). Right: The same for the A
spectral function.

with the help of Eqs. (7.3) of Ref. [16] (which are versions of the FESR (4)). We emphasize
that what this figure shows is that, as a result of the absence of higher-dimension terms assumed
negligible in the tOPE strategy, the tOPE version of the theory side of the FESRs (4) fails to scale
correctly with s0 as s0 decreases below m2

τ . In other words, the argument that the scale mτ is large
enough to effectively suppress the contributions from the higher-dimension CD to the FESR (4),
based on an assumed naive ΛD

QCD/mD
τ scaling, turns out to be incorrect. This is compatible with

the known asymptotic character of the OPE, which implies that these coefficients must eventually
become significantly larger than implied by this naive scaling for sufficiently large dimension D.

It would be very instructive to be able to test this assumption about the simple CD/sD/2
0 sup-

pression for scales s0 ≥m2
τ . Clearly, if the higher-dimension terms in the OPE are suppressed at the

scale m2
τ , they should be even more suppressed at scales larger than m2

τ . Although, regrettably, it is
not possible to test this with the τ data, with some mild assumptions it is possible to do so using
data for e+e−→ hadrons [18, 19].

Using the so-called “optimal" weights proposed in Ref. [14]:

w(2,n)(y) = 1− (n+2)yn+1 +(n+1)yn+2 , (10)

with n = 1, ...,5, which are doubly pinched, one may determine αs and C6,8,10 at s0 = m2
τ , provided

7
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Figure 5: Left: First Weinberg sum rule without DVs. Right: First Weinberg sum rule with DVs taken into
account.

one neglects C12,14,16 in the FESRs (4). In the SU(3) limit, one finds that the correlator of two
electromagnetic currents is 2/3 times the correlator of two isospin currents, as they would appear
in the V channel in τ decay. Consequently, the physics of these two situations cannot be very
different. In Ref. [19] we presented a preliminary version of this type of analysis. The result is
shown in Fig. 7. In this figure we plot the result for the difference between the contribution of the
OPE to the FESR (i.e., the righthand side of Eq. (4) without the DV term) at a variable s0 minus the
same for s0 = m2

τ , as a function of s0
7. The result is represented by the two black curves (dashed for

CIPT and solid for FOPT). We also plot the same difference, but now computed with the e+e− data
as the red points. The fact that they both agree, and vanish at s = s0, is nothing but a consequence
of our definition. What is more interesting is that, not only for s0 < m2

τ but also for s0 > m2
τ , the

two descriptions clearly disagree. This is, again, a rather clear sign that the assumption that higher-
dimension terms in the OPE are negligible is not supported by the data. Similar conclusions follow
from using the weights of Eq. (7) instead of those of Eq. (10).

In summary, we have presented conclusive evidence that the neglect of higher-dimension terms
in the OPE and DVs at the core of the truncated OPE strategy leads to an irreducible systematic

7We do this to account for correlations.
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Figure 6: Comparison of the agreement between the lefthand and righthand sides of the FESR (4) for the
weights w11 and w13 within the tOPE strategy, with DVs and high-dimension condensates neglected (left),
and with DVs taken into account and condensates determined via Eqs. (7.3) of Ref. [16] (right).

error of the order of +0.02 in the value of αs(m2
τ). This method should therefore be considered

unreliable and, consequently, no longer be used, at least not without adding a potential∼+0.02 sys-
tematic error to the tOPE results. As an alternative, we have proposed a strategy that parametrizes
DVs as in Eq. (6) and includes them in the analysis from the start, and which makes no a priori
assumptions about the values of the relevant OPE coefficients, which are to be determined by the
data through fits employing Eq. (4) in a window of values of s0 ranging up to m2

τ . The result of
these fits to ALEPH data leads to [16]

αs(mτ) = 0.296±0.010 −→ αs(mZ) = 0.1155±0.0014 (FOPT) ,

αs(mτ) = 0.310±0.014 −→ αs(mZ) = 0.1174±0.0019 (CIPT) . (11)

Combining these results with those based on the OPAL data, we obtain as our final result

αs(mZ) = 0.1165±0.0012 (FOPT) , αs(mZ) = 0.1185±0.0015 (CIPT) . (12)

These results are in very good agreement with the value for αs obtained from the same type of
FESRs using the e+e− data below the charm threshold [20]. We emphasize that, in this case, the
s0 values being used are sufficiently larger than m2

τ to make the contribution from DVs marginal,

9
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Figure 7: Electromagnetic FESR tests of the tOPE strategy using the set of weights of Eq. (10). Comparisons
of differences between a variable s0 and s0 = m2

τ versions of the OPE and spectral integrals. The OPE
parameter values are obtained from the implementation of the tOPE strategy using the weights of Eq. (10)
and s0 = m2

τ only in the fits.

if not negligible. We should also recall that the τ-based results rely on the assumption that our
theory representation, which is expected to be valid for asymptotically large s0, holds in a region
of s extending down to below the τ mass. The good agreement shown in Fig. 4 and the consistency
with the value obtained from e+e− is evidence for the validity of this assumption.
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