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The strong coupling constant can be determined using the moments of quarkonium correla-
tors. On the lattice the moments of pseudoscalar quarkonium correlators are the most practical
ones, since these have the smallest statistical errors. The moments of the pseudoscalar quarkonium
correlator, are defined as

Gn = ∑
t

tnG(t), G(t) = a6
∑
x
(amh0)

2〈 j5(x, t) j5(0,0)〉. (1)

Here j5 = ψ̄γ5ψ is the pseudoscalar current, a is the lattice spacing, and mh0 is the bare lattice
heavy quark mass. The moments Gn are finite for n≥ 4 (n even) in the a→ 0 limit and do not need
renormalization because the explicit factors of the quark mass. The moments can be calculated in
perturbation theory in MS scheme

Gn =
gn(αs(µ),µ/mh)

amn−4
h (µm)

. (2)

Here µ is the MS renormalization scale, and mh(µm) is the renormalized heavy quark mass in the
MS scheme. The scale µm at which the MS heavy quark mass is defined can be different from
µ [1], though most studies assume µm = µ . The coefficient gn(αs(µ),µ/mh) is calculated up to
4-loop, i.e. up to order α3

s [2]–[3]. For practical applications it is better to consider the reduced
moments

Rn =

Gn/G(0)
n (n = 4)(

Gn/G(0)
n

)1/(n−4)
(n≥ 6)

, (3)

where G(0)
n is the moment calculated from the free lattice correlation function, since the leading

order lattice artifacts cancel out in this ratio, and thus the cutoff effects in Rn are proportional to
αm

s a2n, m≥ 1, n≥ 1. It is straightforward to write down the perturbative expansion for Rn:

Rn =

{
r4 (n = 4)
rn · (mh0/mh(µ)) (n≥ 6)

, (4)

rn = 1+
3

∑
j=1

rn j(µ/mh)

(
αs(µ)

π

) j

. (5)

There is also a contribution to the moments of quarkonium correlators from the gluon conden-
sate [4]. From the above equations it is clear that R4 as well as the ratios R6/R8 and R8/R10 are
suitable for the extraction of the strong coupling constant αs(µ). The calculation of αs in lattice
QCD using the moments of quarkonium correlators was pioneered in Ref. [5] and now is pursued
by several groups [5]–[10]. Here I will discussed this approach using the newest lattice results
based on the calculations in 3-flavor QCD with Highly Improved Staggered Quark (HISQ) action
and several heavy quark masses mh = mc, 1.5mc, 2mc and 3mc with mc being the charm quark
mass [10].

One of the challenges for accurate determination of the strong coupling constant from the
moments of quarkonium correlators is a reliable continuum (a→ 0) extrapolation. There is also
a window problem. We would like to work with the large value of mh for perturbation theory to
be reliable, at the same time to control the cutoff effects which grow with increasing mh. So, one
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has to find a window, where mh/ΛQCD� 1 and amh� 1. This problem is not specific to the mo-
ments method but is present in all lattice methods of αs determination, except for the Schrödinger
functional method (see discussions in the new FLAG report [11]).

To illustrate the challenge of continuum extrapolation of the moments in Fig. 1, I show the
cutoff dependence of R4 and R6/R8 together with continuum extrapolations. One can see that the
cutoff effects is significant and simple a2 extrapolations only work for the smallest three lattice
spacings, for details see Ref. [10].
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Figure 1: The lattice spacing dependence of R4 and R6/R8 for mh = mc. The filled symbols correspond to
the lattice results of Ref. [10], while the open symbols correspond to HPQCD results from Refs. [5, 7]. The
solid line corresponds to polynomial fit, see text. The dashed line corresponds to simple a2 fit. The errors
for the HPQCD-14 result for R6/R8 have been obtained by propagating the errors on R6 and R8.

If one has data only at large lattice spacings, the continuum limit for R4 can be easily under-
estimated, while the continuum limit for R6/R8 can be easily overestimated. One way to check
for correctness of continuum extrapolations is to compare the results obtained for αs using R4 and
R6/R8. The details of continuum extrapolations are discussed in Ref. [10]. Despite the difficulties
of the continuum extrapolations of the moments, the final continuum results obtained in different
lattice calculations seem to agree reasonably well, see discussions in Refs. [10]–[11].

From the continuum extrapolated value of R4 or ratios R6/R8 and R8/R10, the value of αs(µ)

can be obtained at scales comparable to the heavy quark mass (so that there are no large logarithms).
The results for αs(µ =mh) from Ref. [10] are shown in Fig. 2 and Table 1. In Fig. 2, I also compare
the results from different lattice determinations. It is clear that performing lattice calculations at
different values of the quark mass allows one to map out the running of the coupling constant at
relatively low energy scales. It also helps to control the systematic errors of the weak coupling
expansion. The running coupling constant extracted from moments of quarkonium correlators
in Ref. [10] agrees with the result obtained from the static quark anti-quark energy [12] but is
lower than the values of αs obtained by HPQCD collaboration from the moments of quarkonium
correlators. Since the continuum extrapolated lattice results on the moments and their ratios are in
a reasonably good agreement with each other the source of this discrepancy must be related to the
way comparison of the lattice and weak coupling results is performed. In Refs. [10] µ = mh, while
in HPQCD studies µ = 3mh.

From the values of αs(µ =mh) one can extract the 3-flavor Λ-parameter, Λ
n f =3
MS

, which is given
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Figure 2: The running coupling in three-flavor QCD constant corresponding to Λ
n f =3
MS

= 301(16) MeV. The
solid line corresponds to the central value, while the dashed lines show the error band. The blue circles from
left to right correspond to the determination of αs for the static quark anti-quark energy [12] and from the
moments of quarkonium correlators [5]–[7]. The result of Ref. [6] has been shifted horizontally for better
visibility.

Table 1: The values of αs(µ = mh) for different heavy quark masses, mh, extracted from R4, R6/R8, and
R8/R10. The heavy quark mass is given in units of mc. The first, second, and third errors correspond to the
lattice, perturbative truncation, and the error due to the gluon condensate. The fifth column lists the averaged
value of αs. The last column gives the value of Λ

n f =3
MS

in MeV.

mh R4 R6/R8 R8/R10 average Λ
n f =3
MS

1.0 0.3815(55)(30)(22) 0.3837(25)(180)(40) 0.3550(63)(140)(88) 0.3788(65) 315(9)

1.5 0.3119(28)(4)(4) 0.3073(42)(63)(7) 0.2954(75)(60)(17) 0.3099(48) 311(10)

2.0 0.2651(28)(7)(1) 0.2689(26)(35)(2) 0.2587(37)(34)(6) 0.2649(29) 285(8)

3.0 0.2155(83)(3)(1) 0.2338(35)(19)(1) 0.2215(367)(17)(1) 0.2303(150) 284(48)

in the last column of Table 1. If the perturbative errors are under control, the value of Λ
n f =3
MS

obtained
from lattice results at different values of the heavy quark mh should agree. Table 1, however, shows
that there is a tension between Λ

n f =3
MS

obtained for mh = 2mc and the values obtained at smaller

quark mass. Performing a weighted average of the Λ
n f =3
MS

values in Table 1, I get Λ
n f =3
MS

= 301±
16 MeV, where the assigned error reflects the spread of the results in Table 1. This value of the
Λ-parameter corresponds to αs(mZ,n f = 5) = 0.1161(12), which is about two sigma lower than the
most recent result from HPQCD [7], but is in good agreement with the previous determination using
the moments of charmonium correlator in 3-flavor QCD [8]. The analysis of Ref. [8] was criticized
by the new FLAG report arguing that the perturbative uncertainties have been underestimated and
for that reason was given a red symbol for the perturbative behavior [11]. The main argument of
this criticism is the fact that µ = mc is a low scale and that using higher renormalization scales µ =
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smc, s > 1 leads to larger values of αs. While the raised point is certainly valid, the problems with
perturbation theory is not specific to the analysis of Ref. [8] and should affect other determinations
of αs from the moments as well. In particular, if µ 6= mh other choices of µm need to be considered
and varying µ and µm independently will lead to much larger perturbative error [1].

In summary, the determination of αs from the moments of quarkonium correlators, while
promising also appears to be challenging. One of the challenge is the control of the continuum
extrapolations, which requires many calculations at small lattice spacings. So far this requirement
is only met in the 3-flavor calculations with HISQ action [10]. Despite this, there seems to be an
agreement between the continuum extrapolated lattice results on the moments of the quarkonium
correlators from different groups. This implies that differences in the quoted αs values are not
caused by problems in the lattice calculations, but rather the way lattice and perturbative calcula-
tions are combined to obtain αs. It should be noted that the moments of the quarkonium correlators
can be used to extract also the values of the heavy quark masses, and different lattice results agree
quite well, see discussion in Ref. [10].
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