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Introduction

The extraction of αs we present is based on the determination of Λ
Nf=5
MS

, the Λ-parameter of
Nf = 5 flavour QCD in the MS scheme. The latter is obtained from a non-perturbative determination
of Λ

Nf=3
MS

, combined with a perturbative estimate for the ratio Λ
Nf=5
MS

/Λ
Nf=3
MS

. Our strategy can be
summarized into the following equation [2]:

Λ
Nf=5
MS

=

[
Λ

Nf=5
MS

Λ
Nf=3
MS

]
PT

×Λ
Nf=3
MS

where Λ
Nf=3
MS

=
Λ

Nf=3
MS
µ0
× µ0

µhad
× µhad

fπK
× fπK . (1)

In the rest of this contribution, we will briefly review the computation of the different factors
entering this expression. For a more complete discussion, we refer the reader to the original refer-
ence [2], and to the more extended reviews [3, 4, 5].

We begin our presentation from the non-perturbative determination of Λ
Nf=3
MS

and the dif-

ferent ratios that compose it. The first ingredient appearing in Eq. (1) is the value of Λ
Nf=3
MS

in units of the technical scale µ0. This computation is discussed in detail in the first part of
this overview [1], which we advise the reader to consult. Here we only quote the final result:
Λ

Nf=3
MS

/µ0 = 0.0791(19) [6, 7], and recall that the scale µ0 ≈ 4GeV is implicitly defined by the
value of the Schrödinger functional (SF) coupling: ḡ2

SF(µ0) = 2.012. It is also worth recalling that
this ratio has been obtained by studying the non-perturbative running of the SF coupling in the wide
energy range µ ≈ 4−70GeV. With this result at hand, the value of Λ

Nf=3
MS

in physical units can be
obtained by expressing the technical scale µ0 in terms of some experimentally accessible quantity.
We consider a particular combination of the pion and kaon decay constants, fπ and fK , given by:
fπK = 2

3( fK + 1
2 fπ); the reasons for this particular choice will be given later in the text. Meson

decay constants are typically used to set the physical scale of the lattice theory as they can be accu-
rately determined both phenomenologically and on the lattice1. A direct computation of µ0/ fπK ,
on the other hand, is not really feasible if one wants the systematic uncertainties associated with
finite-volume and discretization effects comfortably under control. The large energy separation
between µ0 and fπK = O(100MeV) would indeed require us to simulate rather large lattice reso-
lutions, L/a, for today’s standards; here and in the following we denote by L the physical extent of
the lattice in all four space-time directions and by a its spacing. The solution to this problem is to
rely, as we did for the determination of Λ

Nf=3
MS

/µ0, on a step-scaling strategy (cf. Ref. [1]). More
precisely, by studying the non-perturbative running of a finite-volume coupling, we can relate the
scale µ0 to a lower, finite-volume scale, µhad = O(100MeV), and in a second step connect µhad

with fπK (cf. Eq. (1)).

The gradient flow coupling and its running to low energy

The obvious strategy we could follow at this point would be to continue the non-perturbative
running of the SF coupling started at high-energy down to lower energies. On the other hand,

1A more natural and conceptually clean quantity to consider would be the proton mass. (The masses of the QCD
stable mesons are normally used to fix the value of the bare quark masses appearing in the lattice Lagrangian.) The
extraction of the decay constants from experimental decay rates is indeed not theoretically straightforward and also
relies on the knowledge of CKM matrix elements. Measuring the proton mass precisely on the lattice, however, is at
present very challenging.
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a precise determination of the running of the SF coupling at low energy is impeded by a few
technical reasons (see e.g. refs. [6, 8]). The main issue is that the statistical variance of the SF
coupling as measured in Monte Carlo lattice simulations is such that: var(ḡ2

SF(µ))/ḡ4
SF(µ) =

c(aµ) ḡ4
SF(µ) +O(ḡ6

SF(µ)). This implies that it quickly becomes computationally expensive to
measure this coupling precisely at low energy where the coupling becomes large. In addition,
var(ḡ2

SF) is large in general, and increases as the continuum limit of the lattice theory is approached

due to: c(aµ)
a→0
∝ (aµ)−1. For these reasons, it is more convenient to consider a different family of

finite-volume couplings for the low-energy end of the running. A particularly compelling family to
study is given by couplings defined in terms of the Yang–Mills gradient flow (GF) [9]. The latter
is specified by the equations:

∂tBµ(t,x) = DνGνµ(t,x), Gµν = ∂µBν −∂νBµ +[Bµ ,Bν ],

Bµ(0,x) = Aµ(x), Dµ = ∂µ +[Bµ , · ], (2)

where Aµ is the QCD gauge potential, and t ≥ 0 is the flow time which parametrizes the evolution of
the flow field Bµ along the gradient flow. Gauge invariant fields made out of the flow field Bµ have
the remarkable property of being renormalized once the bare parameters of the theory are [10].
This allows us to define a finite-volume GF coupling as [11, 12]:

ḡ2
GF(µ) = N −1 t2〈Esp(t,x)〉SF|

√
8t=0.3×L

x0=L/2 , Esp(t,x) =
1
4

Ga
kl(t,x)G

a
kl(t,x), µ = L−1, (3)

where 〈·〉SF stands for the (Euclidean) path-integral expectation value in the presence of SF bound-
ary conditions and N is a constant; we refer the reader to the given references for more details.
Here we just note that in order for the GF coupling to depend on a single scale, L, we express the
flow time t in terms of L through the condition

√
8t/L = 0.3. The nice property of the GF coupling

is that var(ḡ2
GF) is finite as a→ 0, and typically small. In addition, in first approximation, one has

that: var(g2
GF)/g4

GF ∝ const., which, as anticipated, makes this coupling well-suited for low-energy
studies.

In order to start computing the running of the GF coupling to low energy, we first need to
know its value at the reference scale µ0. This can be obtained through a non-perturbative match-
ing of the SF and GF couplings. The latter is easily achieved by measuring the two couplings for
the very same set of bare lattice parameters for which ḡ2

SF(µ0) = 2.012. Combining this matching
with a change of scale by a factor of 2, we obtain: ḡ2

GF(µ0/2) = 2.6723(64) [12]. The running
to low energy can now proceed in similar fashion to the computation at high energy. In particu-
lar, we introduce the step-scaling function (SSF) of the GF coupling and its lattice approximant
(cf. Ref. [1]):

σ(u) = lim
a/L→0

Σ(u,a/L), Σ(u,a/L) = ḡ2
GF(µ/2)

∣∣
u=ḡ2

GF(µ),m(µ)=0, µ = L−1. (4)

The SSF encodes the change in the coupling for a finite variation of the energy scale. On the
lattice, it is thus a more natural quantity to consider than the β -function. Once the continuum SSF
is known, however, the non-perturbative β -function can be determined by noticing that:

ln
µ2

µ1
=
∫ ḡGF(µ2)

ḡGF(µ1)

dg
β (g)

⇒ log2 =−
∫ √

σ(u)

√
u

dg
β (g)

where u = ḡ2
GF(µ). (5)
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The left panel of Fig. 1 shows the continuum extrapolations of the lattice SSF for values of the GF
coupling ḡ2

GF ≈ 2− 6.5, and for the lattice resolutions, L/a = 8,12,16. As one can see from the
figure, discretization errors are significant, particularly so at large values of the coupling (higher
sets of points in the plot). Cautious continuum extrapolations are hence needed [12]. Nonetheless,
the good statistical precision of the GF coupling allows us to obtain precise continuum results.

1.2

1.4

1.6

1.8

2

2.2

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

Σ
(u
,a

/
L

)/
u

(a/L)2

Fit
Continuum

Data

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 0.2 0.4 0.6 0.8 1
β
(g
)

α

1-loop
2-loop

Schrödinger Functional
Gradient Flow

0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure 1: Left: Continuum extrapolations of the lattice SSF of ḡ2
GF. The lattice data is in red while the black

points are the continuum extrapolated results (see Ref. [12] for more details). Right: Non-perturbative β -
function of the GF coupling. For comparison the LO and NLO perturbative results are shown, as well as the
results for the non-perturbative β -function of the SF coupling at high energy [12]. In this plot: α = g2/(4π),
with g2 the coupling in the given scheme.

Using these results and Eq. (5) the non-perturbative β -function of the GF coupling can be
computed; this is shown in the right panel of Fig. 1, together with the LO and NLO perturbative
predictions, and the non-perturbative β -function in the SF scheme. It is interesting to observe the
peculiar behaviour of the non-perturbative GF β -function which lies very close to the LO pertur-
bative result even at large values of the coupling, where α ≈ 1. Note however that the deviation
from LO perturbation theory is statistically significant for the most part of the coupling range [12].
Only at values of α ≈ 0.2 the non-perturbative results start to approach the NLO prediction.

Once the β -function is known, we can compute the ratio of any two scales associated with
two values of the coupling (cf. Eq. (5)). If we define the technical scale µhad through the relatively
large value of the GF coupling: ḡ2

GF(µhad) = 11.31, integrating the non-perturbative β -function we
find [12]:

µ0

µhad
= 21.86(42) ⇒

Λ
Nf=3
MS

µhad
= 1.729(57). (6)

Matching to hadronic physics and Λ
Nf=3
MS

Having bridged the gap between the high- and low-energy sectors of QCD, all that is left
to do to determine Λ

Nf=3
MS

is to relate the technical scale µhad with some experimentally accessible
quantity. Rather than establishing this relation directly, it is convenient to introduce an intermediate
reference scale, µ∗ref, so that:

Λ
Nf=3
MS

=
Λ

Nf=3
MS

µhad
× µhad

µ∗ref
×

µ∗ref
fπK
× fπK . (7)
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For the scale µ∗ref we must choose a quantity that can be measured very precisely and easily in lattice
simulations. The problem of computing µhad/ fπK is thus divided into computing the two ratios
µ∗ref/ fπK and µhad/µ∗ref, for which we can consider different strategies in order to achieve the most
accurate result. A quantity that satisfies many desirable properties in this respect is given by µ∗ref =

1/
√

8t∗0 , where t∗0 is a specific flow time (cf. Eq. (2)), implicitly defined by the equation [9, 13, 2]:

0.3 = (t∗0)
2 〈E(t∗0 ,x)〉|mu,d,s=mav,phys , E(t,x) =

1
4

Ga
µν(t,x)G

a
µν(t,x). (8)

Note that the expectation value appearing in this equation is that of the theory in infinite space-time,
i.e., with L = ∞. Moreover, it is evaluated at the SU(3) flavour-symmetric point where all quark
masses are set equal to the physical average quark mass. As anticipated, µ∗ref can be determined
very accurately in lattice QCD and with modest computational effort. This is also aided by the fact
that it is measured at unphysical values of the quark masses which can be simulated with modest
effort, differently from the physical situation which is often reached only through extrapolation.
Clearly, µ∗ref is not measured in experiments, and its value in physical units must thus be fixed by
relating it to some experimentally accessible quantity; in our case fπK .
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Figure 2: Left: Continuum extrapolations of the ratio µ∗ref/µhad. Note that as a consistency check of our
strategy we considered also a second, larger, value for the technical scale µhad [2]. The two sets of data,
labelled as A,B in the plot, refer to different analysis strategies [2]. Right: Running couplings of Nf = 3
QCD obtained from Λ

Nf=3
MS

by integrating the non-perturbative β -functions [2].

The value of µ∗ref in physical units was obtained in Ref. [13], to which we refer for any detail.
Very briefly, employing an extensive set of state-of-the-art large volume simulations of Nf = 3
QCD [14] and a novel strategy for computing the relevant renormalization constants [15, 16], the
precise continuum result: µ∗ref/ fπK = 3.24(4), was obtained. The particular combination fπK =
2
3( fK + 1

2 fπ) was considered as this showed a very mild quark-mass dependence for the chosen set
of simulated quark masses. This allowed for robust and precise extrapolations to the physical quark-
mass point; the latter identified by computing µ∗ref/mπ,K , and taking as inputs the experimental
values for the pion and kaon masses, mπ and mK [17]. Using the PDG value for fπK [18], one
finally arrives at: µ∗ref = 478(7)MeV.2 The ratio µ∗ref/µhad can now easily be evaluated using the

2Note that the hadronic inputs mπ , mK , and fπK , used to fix the bare quark masses and to set the physical scale of
the lattice theory should be corrected for electromagnetic and mu 6= md effects [13]. This is necessary since our lattice
results do not include QED effects and they assume equal up and down quark masses.
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results for aµ∗ref at several values of the lattice spacing determined in the previous computation [13].
Through a small set of lattice QCD simulations of the SF, aµhad can indeed be obtained at matching
values of the lattice spacing [2] and the ratio (aµ∗ref)/(aµhad) be extrapolated to the continuum.
Figure 2 collects these extrapolations, whose final result reads: µ∗ref/µhad = 2.428(18) [2]. With
this last bit of information at our disposal, we can quote (cf. Eq. (7))[2]:

Λ
Nf=3
MS
µ∗ref

= 0.712(24) ⇒ Λ
Nf=3
MS

= 341(12)MeV. (9)

From Λ
Nf=3
MS

and the non-perturbative β -functions of the SF and GF couplings, we can reconstruct
the non-perturbative running of the couplings over the whole range of energy we covered, which
goes from µhad ≈ 200MeV up to µPT = 16µ0 ≈ 70GeV. The result is shown in Fig. 2.

Heavy-quark decoupling and αs

To compute αs we need Λ
Nf=5
MS

. How can we obtain this from our result, Eq. (9)? The first
issue we address concerns the determination of the scale µ∗ref, which allows us to express the Λ-
parameter in physical units. As described in the previous section, this determination is based on the
computation of several low-energy quantities, Q = µ∗ref/ fπK ,µ

∗
ref/mπ,K , in Nf = 3 QCD. Can we

consider these results, and hence that for µ∗ref, valid for the Nf = 4 and 5 theories? The decoupling of
heavy quarks tells us that for an heavy enough quark we should expect: QNf =QNf−1+O(Λ2/M2),
where QNf denotes the low-energy quantity computed in the Nf theory where one flavour is much
heavier than the others and has renormalization-group invariant mass M. Λ stands here for a generic
low-energy scale of the theory, and clearly the Nf−1 theory is defined only in terms of the lighter
quarks (see e.g. Ref. [19]). The Nf = 3 results can therefore be considered legitimate for Nf = 4 and
hence 5, only if the charm mass Mc is actually large enough for the decoupling relation to be valid,
and if the leading O(Λ2/M2

c ) corrections are negligible within the given precision. Dedicated
non-perturbative studies show that the typical O(Λ2/M2

c ) effects in (dimensionless) low-energy
quantities are in fact far below the percent level [20]. As the relevant observables are determined
to a precision of ≈ 1%, we conclude that, within this precision, µ∗ref is well-determined from the
results of Nf = 3 QCD.

The second category of heavy quark effects we must discuss are those affecting the running
of the coupling. It is well-known that in a massless renormalization scheme like the MS, the
decoupling of heavy quarks is not "automatic". Hence, one typically works with the coupling of
the relevant effective theory and matches the couplings of the theories with different flavour content
according to: α

(Nl)

MS
(µ) = ξ 2(α

(Nf)

MS
,m(µ)/µ)α

(Nf)

MS
(µ), where m stands for the (renormalized) Nf−

Nl heavy quark masses and ξ is a computable function (see e.g. [21]). This allows one to write
perturbative expansions that naturally contain only the ”active" quarks at the energy scales of the
processes of interest and avoids the appearance of large logarithms of the heavy quark masses in the
computations. This matching between the two effective theories can equivalently be reformulated
in terms of a relation between their Λ-parameters: Λ

Nl
MS

/Λ
Nf
MS

= Pl,f(M/Λ
Nf
MS

). The function Pl,f

is expected to be more accurately and reliably determined in perturbation theory the larger the
invariant masses M of the decoupling quarks are. Thus, the relevant question in this case is how
well does perturbation theory describe the function P3,4 for values of M corresponding to the charm

5



P
o
S
(
A
L
P
H
A
S
2
0
1
9
)
0
2
3

αs from the ALPHA collaboration (part II) Mattia Dalla Brida

mass; for the decoupling of the bottom quark the situation is clearly expected to be better. This issue
has been recently investigated in detail and the non-perturbative contributions to Pl,f studied [21].
The conclusions of this work are that perturbation theory describes P3,4 at the charm mass with a
precision of at least 1.5% – likely much better. As our determination of Λ

Nf=3
MS

has a precision of

≈ 3.5% (cf. Eq. (9)), this means that Λ
Nf=5
MS

can be safely obtained from Λ
Nf=3
MS

using perturbation
theory.

We are now in the position of quoting our results for αs. Taking as input our non-perturbatively
determined Λ

Nf=3
MS

, Eq. (9), the values of the charm and bottom masses mc
MS and mb

MS from the
PDG [18], and the 4- and 5-loop results for the function ξ [22] and the β -function [23], respectively,
perturbative decoupling predicts [2]:

Λ
Nf=3
MS
→ Λ

Nf=5
MS

= 215(10)(3)MeV ⇒ α
(Nf=5)
MS

(mZ) = 0.11852(80)(25). (10)

The second error in Λ
Nf=5
MS

, then propagated to αs, comes from an estimate within perturbation

theory of the truncation errors in the perturbative expansion for Λ
Nf=5
MS

/Λ
Nf=3
MS

[2]. Our final result
for αs has a precision of ≈ 0.7% and it is well in agreement with the current PDG [18] and FLAG
averages [17].

Conclusions

Lattice QCD offers a very powerful framework for determining αs. By combining finite-
volume couplings and a step-scaling strategy, we were able to obtain a subpercent precision de-
termination of αs where all systematic uncertainties are under control. These include the specific
lattice QCD systematics, i.e., discretization and finite-volume effects, as well as the unavoidable
uncertainties originating from the use of perturbation theory in extracting αs. Our result for αs

in based on a determination of Λ
Nf=3
MS

which relies on perturbation theory only at energy scales
of O(100 GeV), where we proved it accurate. The strong coupling was then extracted using per-
turbative decoupling to match the Nf = 3 and Nf = 5 theories. We argued that non-perturbative
corrections to the decoupling relations are not important at our level of precision.

The dominant source of error in our αs determination comes from Λ
Nf=3
MS

/µ0 (cf. Eq. (1)); in
other words from the computation of the non-perturbative running of the SF coupling from about
4 to 70 GeV [2]. This error is predominantly statistical and can therefore be straightforwardly
reduced. We want to stress that most other lattice determinations of αs avoid computing the running
of the coupling in this energy range by relying on perturbation theory already at a few GeV (see
e.g. refs. [17, 24]). In these cases, one ends up dealing with an error which is mostly systematic,
and thus much harder to reliably quantify. In the first part of this overview [1], we showed with
concrete examples how estimating this sort of error can indeed be very difficult at the level of
precision we aim for αs.

In the near future we expect to be able to reduce our error on Λ
Nf=3
MS

to about 2%, which would
correspond to an error of 0.5% on αs. To further halve this error, on the other hand, requires several
issues to be reconsidered. Non-perturbative decoupling effects might not be negligible anymore,
and one might need to include electromagnetic and mu 6= md effects in the lattice computations in
order to set the physical scale of the theory to a greater level of accuracy.
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