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We present our latest determination of the strong coupling constant αs from the Quantum Chro-
modynamics static energy: αs(mZ) = 0.1166+0.0012

−0.0008, extracted at three loops with leading ultrasoft
log resummation. The determination is based on a combination of lattice data on the static energy
at small quark-antiquark distance and perturbative high-order calculations of the static energy for
small quark-antiquark distance. We discuss further improvements from an upcoming extraction
based on new lattice data, at smaller lattice spacings reaching shorter distances, and on lattice data
on the singlet free energy at finite temperature at very small distances.
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The QCD static energy E0(r), i.e. the energy between a static quark and a static antiquark
separated by a distance r, is a basic object to understand the behavior of strong interactions [1] and
constitutes a fundamental ingredient in the description of many physical processes [2]. The short-
distance part of E0(r) has been computed, in the continuum in the MS scheme, using perturbative
and effective field theory techniques: it is nowadays known at next-to-next-to-next-to leading-
logarithmic (N3LL) accuracy, i.e. including terms up to order α4+n

s lnn
αs with n≥ 0 [3]. The lnαs

terms appear due to virtual emissions of ultrasoft gluons, which can change the color state of the
quark-antiquark pair [4], and in this context the soft (S) scale is 1/r and the ultrasoft (US) scale
is αs/r. E0(r) is a physical observable (up to an additive constant) and as such it can also be
computed on the lattice. It depends only on ΛQCD and r. The comparison between the perturbative
and the lattice calculations tests our ability to describe the short-distance regime of QCD, provides
information on the region of validity of the perturbative weak-coupling approach and allows for
an extraction of αs. In particular, for distances such that rΛQCD � 1 both the perturbative and
the lattice evaluations should agree. Then, one can proceed as follows: fix the scale of the lattice
calculation by reproducing a low energy observable1; evaluate E0(r) for small r perturbatively
in the MS scheme at the needed order; get ΛMS at a given scale by equating the lattice and the
perturbative expressions for E0; extract αs from ΛMS and then run it to the Z mass scale. Notice
that in such case no lattice-to-MS scheme change is necessary because we deal directly with a
physical quantity.

The expression of the static energy in perturbation theory at N3LL is summarized in [9, 7]. It
contains a residual mass and it depends on αs at the scale 1/r and on the logs of the US scale, that
can be resummed at one (N2LL) or two loop accuracy (N3LL) using renormalization group equa-
tions in the effective field theory called potential nonrelativistic QCD [5]. A renormalon ambiguity
in the series expansion should be appropriately canceled with the residual mass to leave an object
well behaved in perturbation theory. When we compare the perturbative curve for the static energy
with the lattice data we need to plot E0(r)−E0(rre f )+E latt

0 (rre f ) = E0(r)+ const where rre f is the
reference distance where we make the perturbative expression coincide with the lattice data and
E latt

0 (rre f ) is the value of the static energy computed on the lattice at that distance.
In Ref. [6] we started a program to extract a precise determination of αs by using lattice data

for the short-distance part of the static energy in 2+1-flavor QCD [8] and comparing them with the
perturbative calculation. This allowed us to determine the strong coupling αs at three-loop accuracy
(including resummation of the leading ultrasoft logarithms), in a way that is largely independent
from the other determinations that currently enter in the world average. The natural scale where
our determination is performed corresponds to the inverse of the typical distance where we have
lattice data, i.e. around 1.5 GeV. Therefore, our analysis provided a determination of αs at a scale
smaller than those entering the world average, and constituted in this way an important ingredient
to further test asymptotic freedom in QCD. We obtained r0ΛMS = 0.70±0.07, which, using r0 =

0.468± 0.004 fm [8] gave αs(1.5GeV,n f = 3) = 0.326± 0.019 corresponding to αs(mZ,n f =

5) = 0.1156+0.0021
−0.0022. The error is dominated by the perturbative uncertainty and could be reduced

by using lattice data at shorter quark-antiquark distance.

1Conventionally in these calculations the scale is fixed through the scale parameters r0 or r1 defined by the condition:
r2 dE0(r)

dr |r=r0 = 1.65, r2 dE0(r)
dr |r=r1 = 1. The values of r0 and r1 are extracted from a lattice calculation of a low energy

observable.
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In our most recent published extraction [9] we therefore used the 2+1 flavor lattice data [15].
The strange-quark mass ms was fixed to its physical value, while the light-quark masses were cho-
sen to be ml = ms/20. These correspond to a pion mass of about 160 MeV in the continuum limit,
which is very close to the physical value. More precisely, we used lattice QCD data corresponding
to the lattice gauge couplings β = 10/g2 = 7.150, 7.280,7.373,7.596 and 7.825. The largest gauge
coupling, β = 7.825, corresponds to lattice spacings of a = 0.041 fm2.

Our extraction [9] was improved in several ways and the central value and the error have been
scrutinized with a long list of checks that we briefly describe in the following (the details of all
this is described in [9]). Lattice artifacts at small distance r may be significant: such artifacts
have been removed and the corresponding systematic error has been estimated. The renormalon
subtraction has been optimized. We performed fits to the lattice data for the static energy using
the perturbative expression at different orders, starting from tree level up to three-loops and we
kept only the range of data in which the fit was improving, confirming that we have reached the
perturbative window. We repeated the analysis using both the static energy and the force. We
performed the analysis with the ultrasoft resummation at N2LL and at N3LL accuracy as well
as with N3LO accuracy plus leading US logarithms. In doing so we found that even if all these
analyses turn out to be consistent, the size of the leading US logs appeared to be comparable to the
three loops correction, which eventually selected the order at which we extracted αs. We varied the
analysis considering only some subsets of lattice points and/or varying the reference point rre f . We
repeated the fits adding r3 and r2 monomials to see if the presence of nonperturbative corrections
(nonlocal condensates), not accounted in the previous fits, could distort the analysis: we did not
find any evidence of nonperturbative corrections. Lastly, we varied the soft scale and consider the
size of the next perturbative correction to estimate the perturbative error.

Our final error comes from the sum in quadrature of the statistical error, the perturbative error
and the error on the scale r1. Given all the performed checks, we consider our αs extraction and
the error attached to it pretty solid. We obtained r1ΛMS = 0.495+0.028

−0.018. By converting this result
to physical units by using r1 = 0.3106± 0.0017 fm, fixed from the pion decay constant fπ [14],
we obtained ΛMS = 315+18

−12 MeV. This value of ΛMS gives αs(1.5 GeV,n f = 3) = 0.336+0.012
−0.008,

corresponding to αs(mZ,n f = 5) = 0.1166+0.0012
−0.0008. This is an extraction of αs at three loops plus

leading US logs resummation and the number is perfectly compatible, but more accurate, with our
previous result given above.

In Fig 1 we show the results one obtains when using larger distance ranges in the fits, up to
r < 0.75r1. The distances r < 0.6r1 are the ones that passed our χ2 criteria3, and were therefore
deemed as suitable for the αs extraction. The point of showing here the results from larger distance
ranges is to illustrate that nothing dramatic happens beyond that point. Figure 1 shows the results
for r1ΛMS at three-loop accuracy, in all the distance ranges that we have analyzed in Ref. [9].

As one can see from the figure, the fits that use distances larger than 0.6r1 give results for
r1ΛMS that are compatible with those used in our main analysis. The error bars, which come
from unknown higher-perturbative orders, are larger in the extended distance ranges. This may be

2One may worry about the evolution of the topological charge on such fine lattices, but, as it was shown in Ref. [15],
the Monte Carlo evolution of the topological charge is acceptable even for β = 7.825.

3We required that the χ2 should improve or at least stay constant passing from one perturbative order to the subse-
quent one and by doing so we selected the perturbative window.
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Figure 1: Results for r1ΛMS at three-loop accuracy, also showing the outcome of analyses with extended
distance ranges. For reference and comparison, the band shows our previous result in Ref. [6]. This figure is
taken from [9].

attributed to the fact that those fits involve lower-energy scales and therefore larger values of αs.
In Fig. 2 we put together the data for all the lattice spacings we have, including those used in

Ref. [6], i.e. from β = 6.664 to β = 7.825, and compare them with the perturbative expressions
at different orders of accuracy. The uncertainties due to the normalization of the lattice data to
a common scale are now included in the error bars, as it is appropriate when putting together
data from different lattice spacings. One can see that the lattice data are perfectly reproduced by
perturbation theory and the different perturbative orders converge to the lattice data.

We would like to further reduce our error: this would entail to get lattice data at smaller spacing
and smaller r. At the present day, these lattices still pose a major challenge due to critical slowing
down, topological freezing, and the need to maintain a sufficiently large volume (in units of the
inverse pion mass). In an upcoming paper [10], we use lattices [11] with extraordinarily fine lattice
spacing (a = 0.0246fm) to achieve a systematically improved extraction of αs. Additionally, we
exploit a new idea. One reason for which it is challenging to reach such fine lattice spacings is that
one has to simultaneously maintain the control over finite volume effects from the propagation of
the lightest hadronic modes, namely, the Goldstone bosons, at the pion scale. A lattice simulation
at high enough temperature avoids this infrared problem, and thus enables reaching much finer
lattice spacings using smaller volumes. We use finite temperature lattices with unprecedentedly
fine lattice spacing (a = 0.00848fm) [12]. The singlet static free energy is again a function of
the static quark-antiquark distance and has been calculated on the lattice [12] and perturbatively
using finite temperature effective field theory methods [13]. The comparison between the two
offers a novel and independent method to get a precise determination of αs. The results that we are
obtaining in these two ways in [10] confirm our 2014 determination of αs [9] with smaller errors.
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Figure 2: Comparison of the lattice data for the static energy with perturbative expressions at different
orders of accuracy. r1ΛMS = 0.495 is used for all the curves. The grey band corresponds to the variation
r1ΛMS = 0.495+0.028

−0.018 for the three-loop plus leading-ultrasoft-resummation accuracy curve. Figure taken
from [9].
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