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Introduction

The strong coupling αs is a fundamental parameter in the standard model, and its precision has
an impact on various studies of the standard model. This parameter is determined by a matching of
a theoretical calculation and an experimental or lattice measurement of a QCD observable. Among
determinations from various observables, the determinations using lattice data generally have small
errors.

In lattice determinations, however, the so-called window problem has been pointed out: it is
difficult to take a wide enough matching range. Accurate lattice simulation can be performed at
the scale well below its UV cutoff scale a−1, the inverse of the lattice spacing. This lattice result
is matched with perturbation theory, where fixed order results are currently accurate at Q & 1–
2 GeV. With the typical lattice spacings available today, it is difficult to take the range satisfying
1–2 GeV . Q� a−1 widely.

The step-scaling method is known as a solution to the window problem. This method en-
larges the validity range of the lattice simulations. (The latest determination has been performed in
Ref. [1].) As an alternative approach, we enlarge the validity range of a theoretical calculation to
lower energy so that accurate lattice data (due to Q� a−1) are available. To this end, we use the
operator product expansion (OPE), which is an extended framework of perturbation theory.

Perturbation theory suffers from an inevitable uncertainty known as renormalon uncertainty.
It is induced from the divergent behavior of perturbative series where perturbative coefficients typi-
cally grow as∼ β n

0 n! at large orders. For the static QCD potential VQCD(r), the leading renormalon
uncertainty is O(ΛQCD), and the next-to-leading one is O(Λ3

QCDr2). These errors are not negligible
at relatively long distances ΛQCDr ∼ 1, and give limitations of perturbation theory.

In the OPE, which can be regarded as an extension of perturbation theory, renormalon un-
certainties are considered to be eliminated. In the following, we focus on the second renormalon
uncertainty rather than the first one (which is r-independent and can be eliminated in the QCD
force). The OPE of the static QCD potential is performed in the effective field theory, potential
non-relativistic QCD (pNRQCD) [2]. It is given in form of multipole expansion as

VQCD(r) =VS(r)+δEUS(r)+ · · · , (1)

where the singlet potential VS(r) has a Coulomb-type potential and is the leading behavior at short
distances (VS(r) ∼ 1/r). A power correction in r is added as O(r2) (δEUS(r) ∼ r2). Since the
second term (and further higher order terms in r) are nonperturbative objects1, a perturbative ex-
pression of VS(r) coincides with that of VQCD(r). Therefore, VS contains the renormalon uncertainty
of O(Λ3

QCDr2). An advantage of the OPE is that this renormalon is cancelled against that of the
second term δEUS(r). This has been shown explicitly in Ref. [2] at the leading-log (LL) level.
Then the OPE prediction has smaller error and has wider validity range than perturbation theory.

However, it is difficult to hold this advantage of the OPE in practical calculations. In particular,
with a naive perturbative calculation of VS, one again suffers from the renormalon uncertainty.
Consider the case where one adds a power correction term of Ar2 to the perturbative result VS. The

1Our fit range extends to relatively low energy scale where the ultrasoft scale is not generally perturbative. Hence,
the ultrasoft scale is treated as the nonperturbative scale in our analysis.
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fitting parameter A [of O(Λ3
QCD)] can be extracted from the r2-term of VQCD(r)−VS(r). However,

since VS has the error of O(Λ3
QCDr2), the nonperturbative effect A has a significant error. (The error

is the same size as the nonperturbative effect itself.) Thus, the introduction of the power correction
is almost meaningless because its coefficient cannot be determined in practice.

To avoid this feature, we use the OPE while subtracting renormalons in VS(r). The use of such
an OPE allows us to use a wider range as shown below, and thus, it relaxes the window problem.
Our fit range is typically taken as 0.6 GeV. r−1 . 4 GeV. This is significantly wider than previous
determinations from the static QCD potential, where typically 1 GeV . r−1 has been used.

Theoretical framework

We explain how we subtract renormalons and how we use the result in the OPE. First, we
consider renormalon subtraction from VS. VS(r) is given by

VS(r) =−4πCF

∫ d3~q
(2π)3 ei~q·~r αV (q)

q2 (q = |~q|) , (2)

where the potential in momentum space αV (q) is currently known up to O(α4
s ) [3]. We apply

renormalization group (RG) improvement to αV (q), i.e., we use the next-to-next-to-next-to-LL
(N3LL) result αV (q)N3LL. Then, the above integral becomes just formal because αV (q)N3LL has a
singularity at q∼ΛQCD due to the running coupling. In other words, the q-integration is ambiguous
and this corresponds to the renormalon uncertainty. In fact, all the known renormalons of the static
QCD potential stem from the q integration of the logarithmic terms in αV (q). In order to render the
integral well-defined, we subtract the IR contribution by an IR cutoff scale µ f :

VS(r; µ f ) =−4πCF

∫
q>µ f

d3~q
(2π)3 ei~q·~r αV (q)N3LL

q2 , (3)

where µ f is taken as ΛQCD� µ f � r−1. The integral is now well-defined. However, it depends on
the artificial cutoff scale. This dependence cannot be removed within perturbation theory. (Note
that the cutoff µ f cannot be sent to zero due to the singularity.) In this sense, this cutoff dependence
corresponds to a renormalon uncertainty. On the other hand, a cutoff independent part, which
potentially exists, is unambiguously determined within perturbation theory. It corresponds to a
renormalon-free part.

To find a renormalon-free part, we separate the cutoff independent part from the cutoff depen-
dent part following Ref. [4]. This is performed by a contour deformation in the complex q-plane.
We obtain [4]

VS(r; µ f ) =V RF
S (r)+O(µ f )+O(µ3

f r2) , (4)

where V RF
S (r) is µ f independent and renormalon free. It has a Coulomb+linear like form. The cut-

off dependence of O(µ f ) and O(µ3
f r2) correspond to the first and second renormalon uncertainties,

respectively.
We list the distinct features of V RF

S . First, it has the N3LL accuracy and is accurate especially
at short distances. Secondly, unlike the usual RG improvement, it does not have an unphysical
singularity at r−1 ∼ ΛQCD, generally caused by the running coupling. Thirdly, it is free from the
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renormalon uncertainties of O(µ f ) and O(µ3
f r2). From the last two features, it is expected that

V RF
S gives a reasonable prediction even at relatively long distances.

The above perturbative result V RF
S (r) is used as follows in the context of the OPE. Since the IR

cutoff scale is introduced to the perturbative calculation, the contribution below µ f is represented
by nonperturbative objects. Then, we introduce the UV cutoff scale to δEUS(r) as δEUS(r; µ f ).
In fact, a similar separation of cutoff dependence can be performed for δEUS(r; µ f ), where the
opposite cutoff dependence of O(µ3

f r2) to VS(r; µ f ) is found. That is, the cutoff dependence in
V RF

S (r; µ f ) cancels2 that of δERF
US(r; µ f ) [5]. Thus, we can perform the OPE in a renormalon-free

way:
VQCD(r) =V RF

S (r)+δERF
US(r)+ · · · . (5)

This is the OPE calculation used in our αs determination. V RF
S (r) can be calculated at the N3LL

accuracy and has ΛMS as the only input parameter. We treat δERF
US(r) = A2r2 where A2 is a fitting

parameter. The difference from the naive OPE is that we subtract the renormalons of VS(r). This
prevents a mixing of the renormalon uncertainty and the nonperturbative effect. Also, it serves to
reduce higher order uncertainty of VS.

αs determination

The above calculation is matched with lattice result to determine αs [6]. We use the lat-
tice result of VQCD(r) obtained by the JLQCD collaboration. The simulated lattice sizes are 323×
64, 483×96, 643×128, whose lattice spacings are estimated as a−1 = 2.453(4),3.610(9),4.496(9) GeV,
respectively.

In our αs determination, we perform two analyses. The first one [Analysis (I)] is a step-by-step
analysis and the other is a global fit [Analysis (II)]. After examining detailed profiles in Analysis
(I), we perform a global fit in Analysis (II), from which our final result is obtained. In this report,
we present a consistency check of the OPE, which is a central concern in Analysis (I), and then
explain Analysis (II).

We examine consistency of the OPE in Fig. 1, where we compare V RF
S (r) with the lattice

continuum limit. Here, we use the PDG value of ΛMS as an input. According to the OPE, the
difference between the lattice result and V RF

S (r), which is shown by the red boxes in the figure,
should behave as O(r2). Indeed, it is consistent with a quadratic behavior in r up to ΛMS r . 0.8.
Thus, the validity range of the OPE turns out to be ΛMS r . 0.8. This is significantly larger than
that of perturbation theory, ΛMS r . 0.3.

Now, we explain Analysis (II). This analysis is performed based on the idea that at short
distances the OPE prediction should coincide with the lattice result once the discretization errors
are removed. Then we assume the continuum limit as

V cont
latt (r) =Vlatt,d,i(r)−κd,i

(
1
r
−
[

1
r

]
d,i

)
+ fd

a2
i

r3 − c0,d,i , (6)

where Vlatt,d,i(r) is the original lattice data measured at the i-th lattice (i = 1,2,3) and d denotes the
direction of~r;3 the second term is a tree-level correction, where [1/r] denotes the LO result of the

2This is confirmed at the LL level.
3d = 1 and d = 2 correspond to the spatial directions (1,0,0) and (1,1,0), respectively.
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Figure 1: Consistency check of the OPE. The blue date are the lattice continuum limit and the blue line
is V RF

S . (Both are given in ΛMS units.) The difference between them are shown by the red data, which are
consistent with the quadratic function given by the red line at ΛMS r . 0.8.

Table 1: Systematic errors in αs(mZ) in units of 10−4. See [6] for details.

finite a Mass H.o. Range Ultrasoft Fact. scheme Latt. spacing
±2 ±0 +12

−10 ±4 ±2 ±3 ±4

lattice perturbation theory; the third term removes the remaining error of O(α2
s a2); the last term

adjusts an r-independent constant. We give the above lattice result in GeV units. This is matched
with the OPE prediction in the same units:

VOPE(r) = z[V RF
S /ΛMS](zr)+A2r2 , (7)

where z = ΛMS GeV. (Note that VS(r) is originally obtained in ΛMS units.) In this global fit, we
determine 16 parameters in total: {z,A2,κd,i, fd ,c0,d,i}. The fit range is 0.07≤ΛPDG

MS
r < 0.6, which

includes not only short but also relatively long distances.
As a result, we obtain αs(mZ) = 0.1179±0.0007(stat), where χ2/d.o.f. ≈ 8.7/14 shows the

validity of this analysis. After including the systematic errors listed in Table 1, we obtain

αs(mZ) = 0.1179±0.0007(stat)+0.0014
−0.0012 (sys) = 0.1179+0.0015

−0.0014 . (8)

which is consistent with the current world average.
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Conclusions

Lattice determinations often suffer from the window problem: a matching range cannot be
taken sufficiently wide. To avoid this problem, we use the OPE with renormalon subtraction,
which is an extended framework of perturbation theory. Such an OPE has the wider validity range
than perturbation theory. The fit is performed reasonably for the wide range, which would lead
to a reliable value of αs. The dominant uncertainty in our determination comes from higher order
uncertainty. It can be reduced with finer lattice simulations.

References

[1] M. Bruno et al., (ALPHA Collab.), Phys. Rev. Lett. 119 (2017) 102001.

[2] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Nucl. Phys. B 566 (2000) 275.

[3] C. Anzai, Y. Kiyo, and Y. Sumino, Phys. Rev. Lett. 104 (2010) 112003; A. V. Smirnov, V. A. Smirnov,
and M. Steinhauser, Phys. Rev. Lett. 104 (2010) 112002; R. N. Lee, A. V. Smirnov, V. A. Smirnov,
and M. Steinhauser, Phys. Rev. D 94 (2016) 054029.

[4] Y. Sumino, Phys. Rev. D 76 (2007) 114009.

[5] H. Takaura, Phys. Lett. B B783 (2018) 350.

[6] H. Takaura, T. Kaneko, Y. Kiyo, and Y. Sumino, Phys. Lett. B 789 (2019) 598; H. Takaura,
T. Kaneko, Y. Kiyo, and Y. Sumino, JHEP 04 (2019) 155.

5


