PoS - Proceedings of Science
Volume 367 - XXIX International Symposium on Lepton Photon Interactions at High Energies (LeptonPhoton2019) - Parallel Sessions
A Generative-Adversarial Network Approach for the Simulation of QCD Dijet Events at the LHC
R. Di Sipio*, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo
Full text: pdf
Pre-published on: November 29, 2019
Published on: December 17, 2019
A Generative-Adversarial Network (GAN) based on convolutional neural networks is used to simulate the production of pairs of jets at the LHC. The GAN is trained on events generated using MadGraph5, Pythia8, and Delphes3 fast detector simulation. We demonstrate that a number of kinematic distributions both at Monte Carlo truth level and after the detector simulation can be reproduced by the generator network.
DOI: https://doi.org/10.22323/1.367.0050
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.