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As the new-generation precision experiments such as MOLLER [1] and P2 [2] look for physics
beyond Standard Model, it is becoming increasingly important to evaluate the higher-order elec-
troweak radiative corrections to a sub-percent level of uncertainty. However, due to propagators
with different masses and higher-order tensor Feynman integrals, the two-loop calculations in-
volving thousands of Feynman graphs become a demanding task requiring novel computational
approaches. In this paper, we describe our dispersive sub-loop insertion approach and develop
two-loop integrals using two-point functions basis which is applicable to wide range of processes.
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1. Introduction

In the past decade, the search for physics beyond the Standard Model (BSM) became one of
the most important objectives in particle physics. The searches for BSM physics involve high-
energy colliders, underground, ground and space telescopes, and high-precision experiments with
high intensity beams at low energies. With high-precision searches, the measured observables,
such as left-right (LR) or forward-backward (FB) parity-violating asymmetries, are extracted with
uncertainties reaching a percent level. Any significant deviation between theoretical prediction
based on the Standard Model (SM) calculation and experiment would be a definitive signal for
BSM physics. The MOLLER experiment planned at JLab [1] is proposing to measure the PV
asymmetry in the electron-electron scattering with the fractional accuracy of 2.4%, which is more
than a factor of five improvement over the precision of its predecessor experiment E-158 at SLAC
[3]. The P2 experiment [2] proposes to measure PV asymmetry in electron-proton scattering with
overall fractional accuracy at 1.4%. Obviously, the theoretical uncertainty must be lower or at
least match the experimental accuracy to make any conclusions regarding the BSM physics signal.
The theoretical accuracy is mainly derived from propagation of uncertainty in input parameters
and from limited knowledge of the higher order, i.e. beyond the one-loop level, contributions.
Specifically, for the MOLLER experiment, the major electroweak two-loop corrections to the Born
asymmetry evaluated in [4–8] in the on-shell renormalization scheme, were found to be close to
five percent, which is a significant contribution compared to the expected experimental precision.
Clearly, it is imperative to calculate a full set of two-loop diagrams participating in e− e or e−
p PV scattering, but this is not a straightforward task, and it will most probably require a high
degree of automatization due to a very large number of diagrams. There is an extensive body of
literature dedicated to the development of two-loop calculations [9–23], offering a wide spectrum
of approaches. We have outlined our general approach to calculations of the two-loop diagrams
based on the representation of many-point Passarino-Veltman (PV) functions in two-point function
basis in [24–26]. Here, we were able to replace a sub-loop integral by the dispersive and regularized
representation of the two-point function. As a consequence, the second-loop integral received an
additional propagator and we were able to use the PV basis for the second-loop integration in the
final stage of the calculations. In this paper, we outline some of the results obtained with the
approach developed in [24–26].

2. Sub-Loop Insertion

We derive the main ideas in the dispersive sub-loop approach from the example of the self-
energy and triangle insertions. For the the left graph in Fig. 1 , we can write the following two-loop
integral:

Ma =−
2

π4

ˆ

d4q1d4q2[
q2

2−m2
][
(q1−q2)

2−m2
][

q2
1−m2

]2 [
(k−q1)

2−m2
] . (2.1)

Here, we assume that all propagators represent scalar particles, couplings are set to one, and masses
are the same. Integration over sub-loop momentum q2 will result in the simple two-point function:
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Figure 1: Examples of self-energy sub-loops in the self-energy, triangle and box topologies. In

general, self-energy could be applied to any internal line.

A. Self-Energy Sub-Loop

The self-energy sub-loop could be inserted into another self-energy, triangle or box topol-

ogy (see Fig.(1)). After replacing self-energy sub-loop by the dispersion integral, graphs on

the Fig.(1) could be reduced to graphs shown on the Fig.(2). More specifically, for fermion

or vector bosons, the self-energy sub-loop can be defined in form of the Lorentz covariant

terms:

⌃V �V
µ⌫ (q) =

✓
gµ⌫ �

qµq⌫
q2

◆
⌃V �V

T

�
q2
�

+
qµq⌫
q2

⌃V �V
L

�
q2
�

(3)

⌃f (q) = �q!�⌃
f
L

�
q2
�

+ �q!+⌃
f
R

�
q2
�

+ mf⌃
f
S

�
q2
�
. (4)

Here, in Eq.(3), ⌃V �V
T,L (q2) represents transverse and longitudinal parts of truncated V-

V mixing self-energies. In Eq.(4), ⌃f
L,R,S (q2) represents left, right and scalar parts of the

fermion truncated self-energy graph. The !± = 1±�5

2
are usual left/right chirality projectors.

Each of the blocks ⌃ in Eqs.(3) and (4) can be written in terms of Passarino-Veltman two-

point tensor coefficient functions. Then, each of the two-point tensor coefficient functions

Bi,ij,ijk

�
q2, m2

↵, m
2
�

�
can be replaced by dispersion integral:

Bi,ij,ijk

�
q2, m2

↵, m
2
�

�
=

1

⇡

1̂

(m↵+m�)
2

ds
=Bi,ij,ijk

�
s, m2

↵, m
2
�

�

s � q2 � i✏
, (5)

k k

q1q1

q2

k - q1

q1 - q2 k k

q1 q2

k - q
1

q 1
 -

 q
2
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Figure 4: Examples of the triangle sub-loop in two-loops topology. In general, triangle could be

constructed around any vertex of the second loop.

The same ideas can be extrapolated in the case of the triangle-type of insertions in the

self-energy, vertex or box diagrams.

B. Triangle Sub-Loop

Examples of the triangle sub-loop insertion in two-loops topology is shown on Fig.(4).

Our starting point here would be to construct the dispersive representation of the three-

point function, which later could be used in the second-loop integration. To simplify, we

will consider the case then one of the external legs of the triangle insertion is put on-shell

(see Fig.(5)). This could be a case shown on Fig.(4), for the triangle insertion in the box

acting as the second loop. Considering that all particles in the loop are scalars, graph on

Fig.(5), is a three-point scalar function, and using Eq.(22) notation, we can write:

C0

�
m2, q2

2, (q2 � k)2 , m2
0, m

2, m2
�

=
µ4�D

i⇡D/2

ˆ

dDq1

[q2
1 � m2

0]
⇥
(q1 � k)2 � m2

⇤ ⇥
(q1 � k + q2)

2 � m2
⇤ ,

(30)

k 
- q

2

(b)(a)

Figure 1: Two-loop self-energy and triangle insertions.

B0
(
q2

1,m
2,m2

)
=− i

π2

´ d4q2

[q2
2−m2][(q1−q2)

2−m2]
:

Ma =−
2i
π2 lim

φ→0

∂

∂φ

ˆ

B0
(
q2

1,m
2,m2

)
d4q1

[
q2

1− (m2 +φ)
][
(k−q1)

2−m2
] . (2.2)

To keep the results in the two-point function basis, we have removed quadratic form 1/
(
q2

1−m2
)2

and replaced it by limφ→0
∂

∂φ

(
1/
[
q2

1−
(
m2 +φ

)])
. Using [26], we can now represent dimension-

ally regularized two-point scalar function dispersively. Here, we also do not account for terms
linear in ε = 4−D

2 , since in the Eq.2.2 B0 function has 1/ε pole but the second-loop integral is
UV-finite:

B0
(
q2

1,m
2,m2)=

(
1
ε
+ ln

µ2

m2

)
− q2

1
π

∞̂

4m2

ds
ℑB0

(
s,m2,m2

)

s
[
q2

1− s− iω
] . (2.3)

The last term in Eq.2.3 will contribute an additional propagator to the second loop, and using Eq.2.3
in Eq.2.2 we can produce the following two-loop result:

Ma =2
(

1
ε
+ ln

µ2

m2

)
∂φ B0

(
k2,m2,m2 +φ

)
|φ=0

− 2
π

∞̂

4m2

ds
ℑB0

(
s,m2,m2

)

s(s−m2)2

[
m2 (m2− s

)
∂φ B0

(
k2,m2,m2 +φ

)
|φ=0 (2.4)

+ s
(
B0
(
k2,m2,s

)
−B0

(
k2,m2,m2))

]
.

Here, the two-point function and its derivative have the simple analytical structure:

B0
(
k2,m2

1,m
2
2
)
= 2+

(
1
ε
+ ln

µ2

m2
2

)
+

√
λ

k2 ln

(
∆++

√
λ

)

2m1m2
− ∆−

2k2 ln
m2

1

m2
2
,

(2.5)

∂φ B0
(
k2,m2,m2 +φ

)
|φ=0=−

1√
∆0k2

ln

√
∆0k2− k2 +2m2

2m2 ,
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with ∆±=m2
1±m2

2∓k2, ∆0 = k2−4m2, and λ ≡ λ
(
k2,m2

1,m
2
2
)
= k4+m4

1+m4
2−2

(
k2m2

1 + k2m2
2 +m2

1m2
2
)

is a usual Kallen function. In the final steps of calculations, the dispersive integration in the Eq.2.4
can be done numerically.

For the right graph in the Fig.1, we can write the two-loop integral as:

Mb =−
1

π4

ˆ

d4q1d4q2[
q2

2−m2
][
(k−q2)

2−m2
][

(q1−q2)
2−m2

][
q2

1−m2
][
(k−q1)

2−m2
] . (2.6)

Clearly, the integration over momentum q2 is represented by the three-point Passarino-Veltman
function C{1}0 ≡C0

(
k2,(k−q1)

2 ,q2
1,m

2,m2,m2
)
=− i

π2

´ d4q2

[q2
2−m2][(k−q2)

2−m2][(q1−q2)
2−m2]

. In order

to replace C{1}0 function by the propagator-like structure, we need to write a dispersive represen-
tation of the three-point function. Using ideas from [24, 26], we can use the Feynman trick to
join the first two propagators in Eq.2.6, remove the quadratic form, and, after shifting momentum
q2−q1 = τ , write C{1}0 function as:

C{1}0 =− i
π2 lim

φ→0

∂

∂φ

1
ˆ

0

dx
ˆ

d4τ

[τ2−m2]
[
(τ− (kx−q1))

2−
(
m2

12 +φ
)]

(2.7)

= lim
φ→0

∂

∂φ

1
ˆ

0

dxB0

(
(kx−q1)

2 ,m2,
(
m2

12 +φ
))

,

where m2
12 = m2 − k2x̄x, and x̄ is defined as x̄ = 1− x. In the case when k2 > 4m2, the mass

parameter m12 in the two-point function becomes imaginary for the values of x ∈ (x1,x2), where
{x1,x2} are the real parts of roots of the equation m2−k2x̄x = 0. As a result, it is required to modify
the dispersive representation of the two-point function. We provide the detailed discussion for the
case of dispersive treatment of two-point functions with imaginary masses in [24]. Using [24] and
[26], we can write the following:

C{1}0 =

1
ˆ

0

dx
[

1
k2x̄x

(
1+

m2

k2x̄x
ln

m2
12

m2

)
+(kx−q1)

2 F
(
(kx−q1)

2 ,m2,m2
12

)]
,

F
(
(kx−q1)

2 ,m2,m2
12

)
=





1
π

´

∞

(m+m12)
2 ds

ℑ[∂φ B0(s,m2,m2
12+φ)|φ=0]

[s−iω][s−(kx−q1)
2−iω]

, if x ∈ [0,x1]∪ [x2,1]

1
2πi

´

∞

−∞
ds

∂φ B0(s,m2,m2
12+φ)|φ=0

[s−iω][s−(kx−q1)
2−iω]

if x ∈ (x1,x2)

(2.8)

and

∂φ B0
(
s,m2,m2

12 +φ
)
|φ=0 =

1
2s

ln
m2

m2
12
− m2−m2

12 + s

s
√

λ
(
s,m2,m2

12

) ln
m2 +m2

12− s+
√

λ
(
s,m2,m2

12

)

2mm12
.
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At this point, Eq.2.6 can be expressed using the three-point dispersive representation given in
Eq.2.8:

Mb =−
i

π2

ˆ

d4q1
C{1}0[

q2
1−m2

][
(k−q1)

2−m2
]

=

1
ˆ

0

dx
k2x̄x

(
1+

m2

k2x̄x
ln

m2
12

m2

)
B0 (2.9)

− 1
π




x1
ˆ

0

dx+

1
ˆ

x2

dx




∞̂

(m+m12)
2

ds
ℑ
[
∂φ B0

(
s,m2,m2

12 +φ
)
|φ=0

]

s− iω

(
B{1}0 + sC{2}0

)

− 1
2πi

x2
ˆ

x1

dx

∞̂

−∞

ds
∂φ B0

(
s,m2,m2

12 +φ
)
|φ=0

s− iω

(
B{1}0 + sC{2}0

)
,

where B{1}0 ≡ B0
(
k2,m2,m2

)
and C{2}0 ≡ C0

(
k2,k2x̄2,k2x2,m2,m2,s

)
. In Eq.2.9, the two-point

function B{1}0 is UV divergent, but Mb (right graph on Fig.1) is UV-finite and hence should not con-
tain any dependence on 1/εn or scale parameter µ . This dependence cancels out when we calculate
Mb numerically, which provides a good test of Eq.2.9. For both dispersive and Feynman parameter
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Figure 2: The left plot shows dependence of the real parts of Feynman diagrams shown on Fig.1 as a function
of four-momentum squared k2 for the m = 2.0 (GeV). The right plot gives the dependence of imaginary parts
of the same diagrams for the above threshold conditions k2 > 4m2. For the UV regularization parameters
1/ε and µ , we use 1/ε = 0 and µ = 2.0 (GeV).

numerical integration, we use Gauss-Kronrod integration library. In order to keep Feynman param-
eter integration stable, we have added a small imaginary part to the mass m. The results shown on
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Fig.2 are given for both real and imaginary parts below and above the threshold conditions. On
the left plot (see Fig.2), contributions from ℜ [Ma] and ℜ [Mb] into ℜ [Ma+b] do show some degree
of cancellation in the space-like regime, and resonance type behaviour near the threshold. The
computing time of the dispersion integral is in the order of fraction of a second. As for Feynman
parameter integration, computing time highly depends on the threshold and is usually in the order
of a few seconds per point below the threshold. Above the threshold, computing time raises dra-
matically (few minutes per point) due to the numerical noise at the points x1 and x2. Overall, Eq.2.4
and Eq.2.9, are in compact form and applicable for the broad kinematic region.

3. Conclusion

In this paper, we have outlined the dispersive treatment approach of the sub-loop insertion
and represented the two-loop results in the two-point function basis. The second-loop integration
was reduced to the one-loop type Feynman graph with an additional propagator coming from the
dispersive sub-loop insertion. As an example, we chose the two-loop scalar self-energy calcula-
tions and the corresponding numerical results in Fig.2. The main conclusion of this work is that
dispersive insertion approach simplifies analytical expressions considerably, to the point that it is
possible to employ computer algebra evaluating the two-loop calculations analytically and carry
out integration numerically.
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