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The Chiral Perturbation Theory (ChPT) has been very successful in describing low-energy
hadronic properties in the non-perturbative regime of Quantum Chromodynamics. The results of
ChPT, many of which are currently under active experimental investigation, provide stringent pre-
dictions of many fundamental properties of hadrons, including quantities such as electromagnetic
polarizabilities. The paper outlines our semi-automated calculations in ChPT, the corresponding
results for the electric and magnetic polarizabilities of the proton and our predictions for Compton
differential cross sections.
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1. Formalism and Results

In general, polarizabilities are related to the deformability and stiffness of hadrons and can
be experimentally accessed through Compton scattering. For the proton and neutron, electric (α)
polarizabilities are approximately the same, while magnetic (β ) polarizabilities are different but
both positive, which points to the paramagnetic nature of the nucleon. Although small (on order of
10−4 f m3), electric and magnetic polarizabilities were measured by several experimental groups.
We can relate an amplitude to the set of Compton structure functions Ri [1] in the following way:

1
8πW

M(γB→ γ
′B) =R1(ε

′∗ · ε)+R2(s′∗ · s)+ iR3σ · (ε ′∗× ε)+ iR4lσ · (s′∗× s) (1.1)

+ iR5((σ · k̂)(s′∗ · ε)− (σ · k̂′)(s · ε ′∗))+ iR6((σ · k̂′)(s′∗ · ε)− (σ · k̂)(s · ε ′∗)).

Here, W = ω +
√

ω2 +m2
B is the center of mass energy and ω is the energy of the incoming

photon. Unit magnetic vector (s = (k̂× ε)), polarization vector (ε) and unit momentum of the
photon

(
k̂ = k/k

)
are denoted by the prime for the case of the outgoing photon. In our case we

have computed the Compton scattering amplitude using CHM [2] in the basis of Dirac chains:

1
8πW

M(γB→ γ
′B) = f1(ε

′∗k)
[
u
(

p′
)
/εu(p)

]
+ f2(εk′)

[
u
(

p′
)
/ε ′∗u(p)

]
+ f3(ε

′∗k)
[
u
(

p′
)
/ε/ku(p)

]
+ f4(εk′)

[
u
(

p′
)
/ε ′∗/ku(p)

]
+ f5

[
u
(

p′
)
/ε/ε ′∗u(p)

]
+ f6(εε

′∗)
[
u
(

p′
)

u(p)
]

+ f7(εk′)(ε ′∗k)
[
u
(

p′
)

u(p)
]
+ f8(εε

′∗)
[
u
(

p′
)
/ku(p)

]
+ f9

[
u
(

p′
)
/ε/ε ′∗/ku(p)

]
.

(1.2)

In this case we get nine Compton structure functions fi. Here, all the dot products are defined in the
four-dimensional space-time with the following metric (1,−1,−1,−1), and u(p) denotes the Dirac
spinor for free baryon. The choice of the basis is not unique and can be defined differently ([1]),
although the evaluation of the polarizabilities based on the basis in Eq.(1.1) is more convenient.
Here, the structure functions Ri are directly related to the electric, magnetic and spin-dependent
polarizabilities in the multi-pole expansion. This includes loops (up to the given order of pertur-
bation) and structure-dependent pole contributions, such as tree-level baryon resonance excitations
and Wess-Zumino-Witten (WZW) ([3], [4]) anomalous interaction. Keeping only the dipole-dipole
and dipole-quadrupole transitions in the multipole expansion of the Compton structure functions
[5–7], we connect the non-Born (NB) structure functions to the polarizabilities of the baryon in
these simple equations:

RNB
1 =ω

2
αE1; RNB

2 = ω
2
βM1; RNB

3 = ω
3(−γE1E1 + γE1M2);

(1.3)

RNB
4 =ω

3(−γM1M1 + γM1E2); RNB
5 =−ω

3
γM1E2; RNB

5 =−ω
3
γE1M2.
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Connecting Compton structure functions fi from Eq.1.2 to Ri from Eq.1.1, we have:

R1 =−η
2
χm2

(
f1 + f2 + f3m(1+η + v)

(
1+

η

1+ v

))
− f5m

(
1+ v− 2η2χ

1+ v

)
− f6m

(
1+ v− η2χ

1+ v

)
+ f7η

2m3
χ

(
1+ v− η2χ

1+ v

)
− f8m2

η(1+ v)
(

1+
η(1+χ)

1+ v
+

η2χ

(1+ v)2

)
− f9ηm2

(
1+ v+η +2ηχ

(
1+

η

1+ v

))
,

R2 =η
2m2

(
f1 + f2 + f3m(1+ v+η)

(
1+

η

1+ v

))
− f5

η2m
1+ v

− f7η
2m3

(
1+ v− η2χ

1+ v

)
+ f9η

2m2
(

1+
η

1+ v

)
,

R3 =2η
2m2 ( f1− f3m(1+ v+η)−χ ( f2 + f3m(1+ v+η)))+ f5m

(
1+ v+

2η2χ

1+ v

)
+

f6η2mχ

1+ v

− f7
η4m3

(
χ2−1

)
1+ v

− f8η
2m2

χ

(
1+

η

1+ v

)
+ f9ηm2

(
1+ v+η−2ηχ

(
1+

η

1+ v

))
,

R4 =( f5 + f6)
η2m
1+ v

−η
2m2 ( f8 + f9)

(
1+

η

1+ v

)
,

R5 =η
2m2 ( f2 + f3m(1+ v+η))− ( f6 +2 f5)

η2m
1+ v

+ f7
η4m3χ

1+ v
+η

2m2 ( f8 +2 f9)

(
1+

η

1+ v

)
,

R6 =−η
2m2 ( f1− f3m(1+ v+η))− f7

η4m3

1+ v
,

where χ = cosθc.m., θc.m. is a photon scattering angle in the c.m.s. reference frame, η = ω

m , and
v = E

m , where E is the energy of baryon in c.m.s. As one can see from Fig.1, the proton polariz-
abilities have almost no energy dependence below 50 MeV. The electric proton polarizability has
strong, resonance-type dependence near the pion production threshold. Of course, we need to add
contribution from the resonances in the loops of Compton scattering. Hence, we have borrowed
the resonance loops results from the small-scale expansion (SSE) approach ([8]). If no ∆-pole
contribution is added, the magnetic polarizability in Fig.1 stays negative (diamagnetic) for almost
all the energies. The ∆-pole contribution is large enough to shift βp(ω) from negative to positive
(paramagnetic) values for energies up to 250 MeV. The pion loop calculations account for magnetic
polarizability coming from the virtual diamagnetic pion cloud, and the ∆-pole resonance contribu-
tion to βp(ω) is driven by the strong paramagnetic core of the nucleon. Thus, in relativistic ChPT
up to one-loop order including the ∆-pole and SSE contribution and extrapolated to zero energy,
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Figure 1: Dependencies of the proton electric and magnetic polarizabilities (in 10−4 ( f m3)) on photon
energy ω (GeV) in c.m.s. The green-dashed curves correspond to the O

(
p3
)
−πN loops contribution and

WZW-anomaly. The solid-red curves include all the previous contributions plus the ∆-pole resonance.

we have (in units of 10−4 f m3):

αp =(7.38(π− loop)−0.95(∆−pole)+4.2(SSE)) = 10.63;

βp =(−2.20(π− loop)+3.0(∆−pole)+0.7(SSE)) = 1.49.
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Figure 2: Unpolarized Compton scattering differential cross-sections computed with CHM in c.m.s. for
three photon energy ω values. The solid blue line corresponds to the CHM predictions for Born with
O
(

p3
)
−πN loops and WZW-anomaly. The dot-dashed yellow line includes all the previous contributions

plus the ∆−pole resonance.

Fig.2 clearly shows that ∆-pole contribution becomes substantial with higher photon energy.
We plan to address the inclusion of ∆-type resonances in the loops for polarizabilities and dσ

dΩ c.m.
in

the future work.
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