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The CALICE Collaboration pioneers past and present developments of highly granular calorime-
ters. The prototypes provide unprecedented 3D images of hadronic showers with up to 500000
cells. This article presents highlights of the physics results of the CALICE research programme in
terms of energy reconstruction of hadronic showers via software compensation and the analysis
of fine details of hadronic showers that are uniquely accessible because of the high granular-
ity. The high granularity in combination with different absorber and sensitive materials lead to a
deep understanding of hadronic showers. This is valuable input to the improvement of simulation
models of hadronic showers e.g. as implemented in the simulation toolkit GEANT4. The data were
recorded with the different prototypes since 2005 at the beam test facilities of CERN and FNAL.
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1. Introduction

Table 1 gives an overview of the prototypes for which results are presented in this article. For
more details the reader is referred to [1].

Project Absorber Sensitive part Segmentation Readout

AHCAL Stainl. steel/Tungsten Scintillator
38 layers, 5-6 λI (long.)

Analogue
3×3cm2, 6×6cm2, 12×12cm2 (later.)

TCMT Stainl. steel Scintillator
12 layers, 5.5 λI (long.)

Analogue
5×100cm2 (later.)

DHCAL Stainl. steel/Tungsten RPC (GEM)
up to 52 layers, 5.3 λI (long.) Digital

1×1cm2 (later.) (1-threshold)

SDHCAL Stainl. steel GRPC (µMegas)
48 layers, 5.8 λI (later.) Semi-digital

1×1cm2 (later.) (2-thresholds)

SiW ECAL Tungsten Silicon
30 layers, 1λI (long.)

Analogue
1×1cm2 (later.)

ScW ECAL Tungsten Scintillator
30 layers, 1λI (long.)

Analogue
1×5cm2 (later.)

Table 1: Overview of CALICE prototypes relevant for this article. The prototypes for hadron calorimeters
called AHCAL, TCMT, DHCAL and SDHCAL feature a typical overall size of 1m3. The prototypes for
electromagnetic calorimeters called SiW ECAL and ScW ECAL feature a typical size of 20×20×20 cm3.
‘Analogue’ Readout indicates that the analogue information is digitised into much more than 2-bits.

2. Energy reconstruction

The example of the DHCAL, left part of Fig. 1, shows the linearity of the energy response
as a function of the beam energy after the application of a correction function to compensate for
saturation effects [2]. Reference [3] demonstrates that the additional threshold available in the
SDHCAL moderates the saturation effect.
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Figure 1: Left: Linearity of the DHCAL [2]. The GEANT4 version is v10.1. Right: Energy resolution of a
system ScW ECAL/AHCAL/TCMT before and after the application of software compensation [4].
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Using data taken in a combined beam test of ScW Ecal, AHCAL and TCMT, the right part of
Fig. 1 demonstrates that the application of software compensation improves the energy resolution
by about 10-20% [4].

3. Global shower analysis

The SiW ECAL has been used to study the longitudinal shower profile [5]. Recent versions
(i.e. v10.1) of the standard GEANT4 simulation model FTFP_BERT do not describe the longitudinal
profile at the shower start until the shower maximum.

The CALICE SDHCAL has been used to study the radial shower profile. As shown in Ref. [6]
the average lateral extension of recorded π showers is wider than the prediction of the simulation
models in GEANT4 (v9.4 here) over most of the available energy range of 10-80 GeV.

The hadronic interaction lengths for π , λπ , and for p, λp, have been extracted from the lon-
gitudinal shower development for energies of the primary particle between 10 GeV and 80 GeV in
the AHCAL [7]. For π showers the data are reproduced by the simulation using GEANT4 Version
9.6p01. In the case of p showers the extracted λp is systematically below the data. The measured
values are however close to the expected values of λπ = 282 mm and λp = 231 mm respectively [8].

4. Detailed shower analysis

The number of secondary tracks has been analysed using AHCAL and SDHCAL data. In both
cases there is the tendency that simulation models underestimate the measured track multiplicity.
For details see Refs. [9, 10].

A recent analysis has also measured the number of secondary tracks in the SiW ECAL [11].
The measured distribution is reasonably well described by the GEANT4 simulation models, see left
part of Fig. 2. The right part of Fig. 2 shows the distribution of the azimuthal angle of the tracks.
Here all the recent GEANT4 simulation models give an accurate description.
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Figure 2: Left: Mean track multiplicity measured in the SiW ECAL. Right: Distribution of the azimuthal
angle of secondary tracks measured in the SiW ECAL. Both figures have been taken from Ref. [11]. The
GEANT4 version is 10.1.
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5. Particle separation and identification

Using multi-variate analysis techniques, the achieved purity of the π selection in the SDHCAL
is more than 98% at µ and e rejection rates of up to 99% [12]. The quality of the results depends
on the purity of the data sample. The high granularity allows for the selection of e.g. a clean π

sample. Reference [13] demonstrates how, by means of the granularity of the SiW ECAL, a data
sample recorded at the Fermilab Testbeam Facility in 2008 has been analysed in order to provide a
clean π sample.
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