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Neutrino-electron scattering provides a clean tool constraining the neutrino flux at accelerator-
based neutrino facilities and requires precise theoretical predictions. We determine the effective
theory of neutrino-electron and neutrino-quark scattering and provide the most precise up-to-
date prediction for neutrino-electron scattering cross sections quantifying errors for the first time
to be of order 0.2− 0.4 %. Radiative corrections in the theory with electron and neutrinos are
determined from three effective couplings as an input. One is the Fermi constant which is known
with sub-ppm accuracy. Another one has a small error of order 0.02 %. The uncertainty of the
third one is limited by the knowledge of hadronic contributions to charge-isospin vector-vector
correlation function.
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How well do we know neutrino-electron scattering? EFT approach

Neutrino-electron scattering is an attractive process for the neutrino physics community. His-
torically, it gave us confirmation of weak neutral currents and first measurements in developing
the Standard Model of particle physics. The process plays an important role in studies of solar
neutrinos and reactor antineutrinos. Moreover, it provides a tool to constrain the neutrino flux at
accelerator-based experiments that is free from nuclear uncertainties [1–3].

As an exactly calculable reaction, neutrino-electron scattering has attracted a lot of attention.
The leading-order Lagrangian and unpolarized cross sections were obtained in pioneering works of
Weinberg and ‘t Hooft [4,5]. Afterwards, electroweak [6–8] and QED corrections with one-photon
bremsstrahlung [8–13] were evaluated by numerous authors. However, the first consistent effective
field theory calculation of this process providing an error estimate has appeared just recently [14].
In this work, we aim to present a complete description of neutrino-electron scattering at sub-percent
level of accuracy and complement the picture with neutrino-quark interaction.

The typical momentum transfer in the elastic neutrino-electron scattering process, Q2, is
bounded from above, Q2 < 2meEν , where Eν is the incoming neutrino energy and me is the elec-
tron mass. The neutrino flux in accelerator-based experiments is peaked at relatively low energies
around Eν ' 0.5−3 GeV. Neutrino scattering with Eν . 10 GeV corresponds to Q2 . 0.01 GeV2

and is not directly sensitive to hadron and quark dynamics. Therefore, all physics in the low-energy
neutrino-electron scattering as well as decay of muon can be accurately described by electron,
muon and neutrino degrees of freedom in an effective QED field theory with contact four-fermion
operators [15–17]. The effective four Fermi Lagrangian LF is given by

LF = − ∑
`=e,µ,τ
`′=e,µ

ν̄`γ
σ PLν`

¯̀′γσ (c
ν``
′

L PL + cν``
′

R PR)`
′− c

(
ν̄µγ

σ PLνe ēγσ PLµ +h.c.
)
. (1)

Here PL and PR are projectors on the left-handed and right-handed chiral states respectively:

PL =
1− γ5

2
, PR =

1+ γ5

2
. (2)

e, µ and ν` denote electron, muon and corresponding neutrino fields, and cν``
′

L,R, c are effective
couplings. We determine effective couplings by matching the effective theory to the Standard
Model at the electroweak scale [18] through order O(ααs) in modified minimal subtraction MS
renormalization scheme [19] with a subsequent running to low energies. The running is governed
by the closed loop contributions in Fig. 1, where all degrees of freedom in the theory appear in the
loop.

Couplings cν`e
R depend on the scale µ within MS renormalization scheme. Others can be

determined from scale-independent combinations

cντ e
L (µ)− cντ e

R (µ) = cνµ e
L (µ)− cνµ e

R (µ) = −
√

2G̃e, (3)

c(µ) = 2
√

2GF, cνee
L (µ)− cνee

R (µ) = −
√

2G̃e +2
√

2GF, (4)

with the Fermi coupling GF and a constant G̃e:

GF = 1.1663787(6)×10−5 GeV−2, G̃e = 1.18083(21)×10−5 GeV−2. (5)
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Figure 1: The leading contribution to running of couplings in effective theory.

The uncertainty of the latter is mainly from neglected higher-order perturbative corrections (esti-
mated by varying the matching scale by a factor

√
2) with a subdominant error from input param-

eters.
Above the τ-mass scale, the right-handed coupling is flavor independent:

cντ e
R (µ) = cνµ e

R (µ) = cνee
R (µ) = cR (µ) , µ ≥ mτ . (6)

For neutrino-electron scattering and muon decay applications, radiative corrections can be evalu-
ated in the leptonic theory. At scale µ = 2 GeV in MS renormalization scheme, the undetermined
constant is [14] cR (µ = 2 GeV) = 0.7773(28)×10−5 GeV−2, with the dominant uncertainty com-
ing from hadronic contributions in Fig. 1. Due to low momentum transfer of neutrino scattering
process compared to the hadronic scale, this contribution can be evaluated at Q2 = 0 and was inte-
grated out in Refs. [14,20]. Equivalently, radiative corrections can be calculated in the theory with
electron and neutrinos only with couplings at muon mass scale:

cνee
R

(
mµ

)
= cνµ e

R

(
mµ

)
= 0.7706(29)×10−5 GeV−2, (7)

cντ e
R

(
mµ

)
= 0.7779(29)×10−5 GeV−2, (8)

and in QED limit:

cνee
R (me) = 0.7575(29)×10−5 GeV−2, cνµ e

R (me) = 0.7711(29)×10−5 GeV−2, (9)

cντ e
R (me) = 0.7784(29)×10−5 GeV−2, (10)

which determine oscillations of neutrinos in matter.
Within the effective theory, we evaluate the absolute total cross section for neutrino-electron

scattering including virtual QED corrections, i.e., vertex, field renormalization factors and the
closed fermion loop contribution of Fig. 1, and radiation of one real photon [14]. We present
the results for νµe, νee, ν̄µe and ν̄ee scattering in Fig. 2 and provide an error estimate for the
first time. The cross section grows linearly with incoming neutrino energy Eν while the relative
uncertainty is approximately constant. In Ref. [14], we also evaluate various spectra, double- and
triple-differential distributions both for the case of finite electron mass (applicable to low-energy
neutrinos) and in the limit of small electron mass (for applications to high-energy neutrino beams).

We stress that bremsstrahlung must be treated carefully, in accordance with experimental con-
ditions. We concentrate on the scattering of muon neutrino flavor for definiteness. In Fig. 3, we
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Figure 2: Total cross section in the (anti-)neutrino-electron scattering processes νµ e→ νµ e(γ), νee→
νee(γ), ν̄µ e→ ν̄µ e(γ) and ν̄ee→ ν̄ee(γ) as a function of (anti-)neutrino beam energy Eν . The energy-
independent relative uncertainty mainly from the charge-isospin hadronic contribution is also presented.

compare the energy spectrum w.r.t. recoil electron energy Ē = Ee to the spectrum w.r.t. the sum of
electron and photon energies Ē = Ee +Eγ , as a function of the variable X:

X = 2me

(
1− Ē

Eν

)
, (11)

which becomes X ≈ Eeθ 2
e for (anti-)neutrinos of high energy in the case of the electron energy

spectrum, where θe is the electron scattering angle. Although the integral of both curves is identical,
applying an experimental cut on variable X can lead to an under- or over-estimate of the signal if
the chosen distribution does not conform to experimental conditions. This would lead to inaccuracy
in neutrino flux calibration.

For completeness, we present also the effective Lagrangian of neutrino-quark interactions L q
F :

L q
F =−∑

q,`
ν̄`γ

µPLν` q̄γµ(c
q
LPL + cq

RPR)q− ∑
q6=q′,`

(
cqq′ ¯̀γµPLν` q̄γµPLq′+h.c.

)
, (12)

where effective couplings to different quark fields q are related as

cb
R (µ) = cs

R (µ) = cd
R (µ) , cc

R (µ) = cu
R (µ) , (13)

cs
L (µ) = cd

L (µ) , cc
L (µ) = cu

L (µ) , (14)

3cu
L +2cνµ e

L =
√

2Gu, −3cd
L + cνµ e

L = 2
√

2Gd , (15)

cu
L− cu

R =
√

2G̃u, cd
L− cd

R =−
√

2G̃d , (16)
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Figure 3: Energy spectrum in the neutrino-electron scattering νµ e → νµ e(γ), plotted as a function of
X= 2me(1−Ē/Eν) for two neutrino beam energies Eν = 1,10 GeV. The solid and dashed-dotted curves cor-
respond with electron spectrum, i.e., Ē=Ee, dashed curves with electromagnetic spectrum, i.e., Ē=Ee+Eγ .

with scale-independent generalizations of the Fermi constant determined up to order O(α):

Gu = 1.14570(23)×10−5 GeV−2, Gd = 1.18211(21)×10−5 GeV−2, (17)

G̃u = 1.16841(20)×10−5 GeV−2, G̃d = 1.18154(21)×10−5 GeV−2. (18)

In Table 1, we present the results for all effective couplings in the quark Lagrangian (12) at
µ = 2 GeV. The uncertainty of neutral current couplings comes mainly from the variation of the
electroweak matching scale. The error of the charged current coupling cqq′ is due to an unaccounted
anomalous dimension of order αα2

s . Vqq′ denotes a CKM matrix element.

Table 1: Effective couplings (in units 10−5 GeV−2) in n f = 4 Fermi theory of neutrino-quark interaction at
µ = 2 GeV.

cu
L cu

R cd
L cd

R cqq′/Vqq′ (MZ)

µ = 2 GeV 1.14065(13) −0.51173(38) −1.41478(12) 0.25617(20) 3.32685(8)

Note that a scheme parameter a enters the expression for cqq′ coming from the one-loop match-
ing condition on the effective field theory side as well as from the two-loop anomalous dimension.
Performing Naive Dimensional Regularization (NDR), the relevant tensor product is expressed
through the dimension of space-time d as [21–23]

γ
α

γ
β

γ
µPL⊗ γµγβ γαPL = 4(1+a(4−d))γ

µPL⊗ γµPL +E(a) . (19)

We choose a =−1 so that the evanescent operator E projects to zero on the basis

γ
µ ⊗ γµ , γ

µ ⊗ γµγ5, γ5γ
µ ⊗ γµ , γ5γ

µ ⊗ γµγ5. (20)
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Neutrino-electron scattering at energies of modern accelerator experiments and below is de-
scribed by the theory with electron and neutrinos only. This work provides effective couplings
in the interaction Lagrangian at a sub-percent level and presents absolute total cross section and
energy spectra in neutrino-electron scattering quantifying errors for the first time. Hadronic con-
tributions to the charge-isospin vector-vector correlation function provide the main source of un-
certainty and require further investigations. Our cross section results can be useful to constrain the
neutrino flux in modern and future neutrino experiments. The presented neutrino-quark scatter-
ing Lagrangian with corresponding couplings at µ = 2 GeV scale could be exploited in a broader
program of neutrino-nucleon and neutrino-nucleus interactions.
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