PROCEEDINGS

OF SCIENCE

Continuous Integration of FPGA Designs for CMS

Robért Glein*
University of Colorado at Boulder, High-Energy Physics
E-mail: robert.glein@colorado.edu

Alexx Perloff
University of Colorado at Boulder, High-Energy Physics
E-mail: alexx.perloff@colorado.edu

Keith Ulmer
University of Colorado at Boulder, High-Energy Physics
E-mail: keith.ulmer@colorado.edu

Due to the high degree of flexibility when designing firmware for FPGAs, the build process and
the designs themselves are vulnerable to errors. Continuous integration is a fast way to detect
a majority of such errors. Additionally, simulations — using test methodologies for testbenches
such as unit tests — and hardware tests can be automated. Continuous integration offers the ben-
efits of reproducible results, reliable error detection, error tracing, avoiding human errors in the
build process, and minimizing the manual verification of the firmware. Such an extensive and
automated development procedure requires a slight increase in setup time and the need to use a

comprehensive integration tool, such as the GitLab’s CI/CD tools.

Topical Workshop on Electronics for Particle Physics TWEPP2019
2-6 September 2019
Santiago de Compostela - Spain

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:robert.glein@colorado.edu
mailto:alexx.perloff@colorado.edu
mailto:keith.ulmer@colorado.edu

Continuous Integration of FPGA Designs for CMS Robért Glein

1. Introduction

In the development of FPGA designs, comprehensive verification and testing is required. This
is especially true for firmware developments with multiple contributors. The iterative firmware de-
velopment process starts with the build environment and ends with the deployment of the firmware.
Modular firmware designs are highly flexible, use various submodules and tools for simulation,
synthesis (netlist translation), implementation (place and route), and test of FPGA designs. To
manage this complexity, Continuous Integration (CI) offers an automated way to set up, build, ver-
ify, control, monitor, and deploy the FPGA implementation. CI is widely and successfully used
in software development [1]. CI is based on uniform build, simulation, and test environments and
ensures a correct build of the FPGA design. Additionally, it covers essential functionalities of the
specified simulations and tests. Human errors in the build process are prevented, for example miss-
ing files, wrong tool versions, changed global constants, and wrong submodule commits. Another
main benefit is that the manual verification of the firmware can be minimized, especially if different
FPGAs and/or configurations are supported.

2. Continuous Integration Overview

The preconditions for CI of firmware are that the code is versioned with a system such as git
and that the code can be built in an automated way. Figure 1 shows a schematic of the CI concept.
First, we commit the code and related files manually, as is typical for a versioning system like
git. Second, the CI system simulates, builds (synthesizes, implements, and generates the bit file),
and optionally tests the hardware in an automatic manner following a setup script. In the system
demonstrated here, a manual review of the CI results is used to ensure that all of the tests were
successfully completed and to have a human-based check before release. After this review, the tool
will automatically deploy the results. We recommend and will demonstrate the use of a Command
Line Interface (CLI) build system. Although the system described here makes use of GitLab’s CI
tools, we will discuss alternative tools as well.

2.1 Command Line Interface Firmware Build Systems

Many CI tools exist that can handle a firmware development environment and also make use of
a CLI. We investigated several such tools and list here that which we found could handle the Xilinx
Vivado workflow: Ruckus [2], IP Bus Builder (IPBB) [3], HDL Make [4], and vendor tools with
CLI support (e.g. Tool Command Language — TCL). All these tools provide abstraction of complex
procedures to CLI commands using setup files. From this point on we will focus on development
using the makefile-based CLI tool Ruckus, but the concept is similar for the other tools. Some
Ruckus commands, including a short description of the purpose of the command, are:

e make depend Vivado Project Creation (e.g. FPGA type)
e make sources Vivado Source Setup (e.g. add *.vhd)

e make xsim Vivado Simulation

e make syn Vivado Synthesis

e make bit Vivado Implementation and Bitgen

e make interactive Vivado Interactive (TCL CLI)

e make gui Vivado Graphical User Interface (GUI)

Continuous Integration of FPGA Designs for CMS Robért Glein

Code:
.vhd, .v,
.Xci, .bd, F—
. . - ontinuous
\ / Slmulatllon. Bmlgi. Deployment (CD):
ModelSim, synth, impl, .
TN Vivado bitgen ROUEND S,
deploy
Commit |@® L o
N/

Unit test HW test

Related
code:

build,
library, ...

Figure 1: General overview of continuous integration for firmware.

These commands provide a good granularity — which will be later mapped to stages — to simplify
the CI setup. While the Ruckus CLI tool was developed by a team at Stanford University [2], we
have now extended the toolset to include the Xilinx Vivado simulation (xsim) workflow.

2.2 Continuous Integration Tools

In contrast to the just described CLI tools, this subsection discusses CI tools, which orches-
trate the CLI tools. There are a few CI tools that can be used for firmware development, many
of which are surveyed in [5]. We investigated GitLab Continuous Integration / Continuous De-
ployment (CI/CD) [6], Jenkins [7], CircleCI [8], and Travis [9]. Our CI tool requirements are:
git compatibility, support of custom runners, support of the entire design flow (plan, set up, build,
verify, control, monitor, and deploy), and configuration management. Because GitLab CI/CD is the
tool that best fulfills our needs, we made the best experiences with, and is most the comprehensive
[5], we have chosen to proceed using that tool. However, the workflow would be similar if using
the other CI/CD programs.

GitLab CI/CD is configured using a . gitlab—ci.yml file, which is committed to the repos-
itory. Among other things, this file specifies variables, stages, job templates, and jobs, the last of
which can call upon other scripts contained within the repository. The .gitlab-ci.yml fileis
executed by a GitLab runner (a workstation or a server) as a pipeline when new code is pushed to
the git repository. The runner is an isolated (virtual) machine with installed software (e.g. Xilinx
Vivado) that picks up jobs from the coordinator (GitLab server). It can be specified as a shared,
group, or specific runner. For security purposes, the runner and coordinator are connected via a
token, allowing only authenticated programs to be sent to the runner. The gitlab-runner executable
is configurable at the user level for things such as number of parallel jobs, type of jobs, etc. The
CI/CD service provided by GitLab is compatible with container based systems such as Docker,
allowing for user customization of the build environment. One other feature worth mentioning is

Continuous Integration of FPGA Designs for CMS Robért Glein

that GitLab allows for the mirroring of external git repositories. This then allows the GitLab CI/CD
service to be used while not relying on GitLab as the main repository hosting service.

3. Continuous Integration Example

In this section we present a firmware design workflow for the Global Track Trigger (GTT)
FPGA board of the CMS level 1 trigger [10]. Figure 2 shows a specialization of Figure 1, including
commands from the CLI build system Ruckus from Section 2.

Use Vivado GUI between the steps:

lib and make gui
FRW A
Code: (\
xc\:hidv _ Continuous
-Xcl, .bd, ... Simulation: Build: Deployment (CD):
make xsim Takkee Sbyir::; ReVieW, Stage,
deploy
P ® @ L 4 J
Unit test
; . HW test:
using TextlO: VIO (trigger)
Implemented el LA
Related in Cl job call
code:
ruckus, A
HLS, ... (\
i qJ g
Stmulk Slrrtw#éate golden.ixt g >
input.txt ES
testbench Result: 8 @
<
output.txt o

Figure 2: Overview of applied continuous integration using a command line interface tool for firmware
builds. The command make gui is for manual debugging and not part of the continuous integration.

The input stimuli required by the Hardware Description Language (HDL) simulation are gen-
erated by a Python script from within a unit test. These stimuli are fed into a testbench using the
TextIO library, at which point the Vivado HDL simulation generates the results. The checksum for
the results is calculated and compared to a golden reference to determine if the test failed or passed.
By generating the input.txt and output.txt on the fly, which both consisting of many lines of code
depending on the simulation time and time resolution, we reduce the amount of data that has to be
stored in the repository. In this CI example, we set up several HDL simulations, which are both
performed and evaluated in parallel. The synthesis stage — followed by the build stage — will only
be triggered if the simulation stage is successful. In the example setup, the hardware testbench is
instrumented with Virtual Input/Output (VIO) modules and Integrated Logic Analyzer (ILA) mod-
ules provided by Xilinx. Figure 3 shows a screenshot of the CI pipeline. Note that due to the lack
of a dedicated FPGA board for hardware testing, that portion of the CI workflow has been skipped.

Continuous Integration of FPGA Designs for CMS Robért Glein

The depicted pipeline is specified by the . gitlab-ci.yml configuration file. The results of CI
pipelines can be accessed in form of artifacts, in our case a bit file, and log files. In other projects
we extended the CI of firmware by combining it with CI of Vivado High-Level Synthesis (HLS),
which generates HDL code from high-level code such as C/C++. It is easier to setup the CI for
Vivado HLS because we can take advantage of some of the built-in TCL scripts for the stages:
build-csim, build-csynth, build-cosim, and build-export.

Project-prepare Project-make Project-doxygen Project-sim Build-synth Build-impl
@ project-prepare © @ project-make © @ project-doxygen © @ module-sim-tr... © @ build-synth Q @ build-impl Q
@ module-sim-ve... &

@ project-sim Q

Figure 3: Screenshot of a successfully build GitLab CI/CD pipeline (stages and jobs) of an FPGA design.
The Project-sim stage consists of three parallel simulation jobs.

We encountered different types of errors, whereby CI saved us time due to the early detec-
tion compared to a non-automated build and verification flow: Functional errors in simulation and
hardware test (e.g. erroneous algorithms), erroneous build environment (e.g. wrong tool version),
erroneous HDL module interfaces (e.g. changed width), wrong submodule commit, and timing
closure errors.

4. Conclusion

CI for firmware builds offers results that are easier to reproduce compared to firmware project
without CI. Errors are exposed faster and the troubleshooting is made easier by tracing an error to
the exact commit. The manual verification of the firmware is minimized by setting up automated
simulations and hardware tests. By using GitLab CI/CD developers can take advantage of a git-
based, fully featured platform for software and firmware development. For many users, a CLI-
based build system will help to simplify the setup of the CI project. The entire FPGA design
process is supported by GitLab and GitLab CI/CD, including planning (organizing and tracking
project progress), creating, verifying, packaging, releasing, configuring, and monitoring.

References
[1] N. Forsgren, D. Smith, J. Humble, and J. Frazelle, ““State of DevOps 2019,” Tech. Rep., 2019.
[Online]. Available: https://services.google.com/fh/files/misc/state-of-devops-2019.pdf

[2] L. Ruckmann, “TID-AIR Electronics: An Introduction to Ruckus and SURF,” Oct. 2018. [Online].
Available:
https://docs.google.com/presentation/d/1kvzXiByESWIS040Xd573DdR7dQU4BpDQGwWEgNyeJjTl/edit

[3] “IPBB primer - IPbus SW v2.6.4, FW v1.5 documentation,” 2018. [Online]. Available:
https://ipbus.web.cern.ch/ipbus/doc/user/html/firmware/ipbb-primer.html

[4] “Hdlmake Wiki,” 2019. [Online]. Available: https://www.ohwr.org/project/hdl-make/wikis/home
[5] “DevOps Tools Landscape | GitLab,” 2019. [Online]. Available: https://about.gitlab.com/devops-tools/

Continuous Integration of FPGA Designs for CMS Robért Glein

“GitLab CI/CD,” 2019. [Online]. Available: https://docs.gitlab.com/ee/ci/
“Jenkins,” 2019. [Online]. Available: https://jenkins.io/

“CircleCl,” 2019. [Online]. Available: https://circleci.com/

“Travis CL,” 2019. [Online]. Available: https://travis-ci.org/

CMS Collaboration, The Phase-2 Upgrade of the CMS L1 Trigger Interim Technical Design Report,
Sep. 2017. [Online]. Available: https://cds.cern.ch/record/2283192

