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The CMS Level-1 calorimeter trigger was completely upgraded before the start of the 2016 data-
taking. The upgraded system ran successfully during Run 2 and will continue running throughout
Run 3. Its novel time-multiplexed architecture is made possible by large FPGAs connected by fast
optical links, operating in MicroTCA chassis. We describe the architecture of the system and the
hardware used to implement it. In particular, examples of advanced trigger algorithms enabled
by the time-multiplexed design are discussed. Precise FPGA floorplanning allows placing all
calorimeter trigger algorithms in a single board. The performance of the system is presented
based on the 2016–2018 data taking of proton collisions at the LHC.
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1. Introduction

The CMS experiment uses a two-level trigger system for online selection of collision events.
The Level-1 trigger is a hardware system that selects events to be read out and sent to High-Level
Trigger (HLT) at a maximum event rate of 100 kHz (out of the 40 MHz bunch crossing rate), with
a latency of only 3.8 µs. The HLT is a software farm that selects ≈1 kHz of events for storage and
offline analysis. The CMS experiment and its coordinate system are described in Ref. [1].

In order to achieve the best possible performance under the harsh luminosity conditions of Run
2, the CMS Level-1 calorimeter trigger was completed before the start of the 2016 data-taking [2].
This Phase-1 upgrade covered the hardware, firmware, the timing control system, and the trigger
control software. The upgraded system collected data until the end of Run 2 in 2018, and will
continue running throughout Run 3. Its novel time-multiplexed architecture is made possible by
large Xilinx Virtex-7 690 FPGAs and fast optical links. Precise FPGA floorplanning allows placing
of all calorimeter trigger algorithms in a single board. This enables precise evaluation of global
event quantities and usage of efficient pileup mitigation techniques. For each event, the trigger
algorithms reconstruct and identify trigger objects that correspond to electrons and photons (e/γ),
hadronic tau leptons (τh), and hadronic jets. Global energy sums such as the missing transverse
energy are also calculated. In the following, we describe the architecture of the system and the
hardware used in it, and report its performance during the 2016–2018 proton-proton data taking at
the LHC.

2. Architecture of the upgraded CMS calorimeter trigger

Both the Electromagnetic calorimeter (ECAL) and the Hadron calorimeter (HCAL) provide
input to the calorimeter trigger. They have dedicated front-end electronics to shape the signal
pulses, digitize them and sum them into trigger towers (TTs). In the barrel, the trigger towers have
η ×φ granularity of approximately 0.087×0.087, corresponding to 5×5 ECAL crystals and one
HCAL tower behind them. In the endcaps, the trigger tower size increases up to 0.17×0.17.

The two-layer architecture of the upgraded calorimeter trigger is illustrated in Figure 1. The
first layer consists of 18 Calorimeter Trigger Processor 7 (CTP7) AMC cards [3], based on Virtex-
7 FPGAs. The Layer-1 boards receive TTs from a specific geometrical region via 4.8 Gb/s or
6.4 Gb/s optical links, and take care of TT-level pre-processing of the data. This includes energy
calibration and calculation of the TT transverse energy (ET) as well as additional feature bits, such
as the H/E ratio (the ratio of HCAL and ECAL energy deposits). The TT information is compressed
into 16-bit words for efficient transmission to Layer 2.

The data corresponding to one event are collected from all Layer-1 boards and sent to one
of the Layer-2 boards via 10 Gb/s optical links. Layer 2 consists of nine Xilinx Virtex-7-based
Master Processor 7 (MP7) boards [3], placed in a single µTCA crate. The second layer works in a
time-multiplexed manner: each Layer-2 board has access to a full event, and uses information from
the all TTs to evaluate the event. The time-multiplexed approach is used in CMS also in DAQ and
HLT systems, but the upgraded calorimeter trigger system is its first application in L1T.

The Layer-2 boards host the trigger algorithms, described in Ref. [4], reconstructing the trigger
objects and energy sums. Precise FPGA floorplanning allows all calorimeter trigger algorithms for
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Figure 1: The architecture of the upgraded calorimeter trigger system. In Layer 1, 18 CTP7 boards pre-
process the trigger tower information regionally and send it via fast optical links to Layer 2, which contains
9 MP7 boards. TheLayer 2 functions in a time-multiplexed way, processing each full event in one of the
nine boards. Finally, a "demux" card de-multiplexes the output for the global trigger. Examplary data flows
from two regions are shown as black lines, and the other links as grey lines.

different objects to run in a single MP7 board. Finally, a de-multiplexing MP7 board collects the
data from a Layer-2 node, serializes it, and sends the 12 highest-energy objects of each type and
the energy sums to the global trigger.

Upon arrival to the global trigger, these input data are synchronized to the LHC clock. The
global trigger, also based on MP7 boards, combines the calorimeter information received from the
de-multiplexing node with the muon trigger outputs, and performs the final L1 Accept decision
based on the active trigger menu.

In 2017, the global trigger was expanded from 3 to 6 boards. The larger amount of logic re-
sources in the global trigger allows implementation of complex multi-object trigger paths targeting
specific event topologies, previously possible only at HLT level or offline. For example, a specific
algorithm that targets Higgs boson production via vector boson fusion has been developed [5].

3. Trigger algorithms and their performance

The jet reconstruction is seeded by a TT that exceeds a pre-programmable ET threshold of
4 GeV. The jet energy is determined by summing the TT energies in a 9×9 TT window centered
around the seed. The effect of pileup is estimated with a "chunky donut" algorithm [4]. The jets are
calibrated as a function of the transverse momentum (pT) and η using a dedicated look-up table.
Efficiency curves for a set of single-jet algorithms used in 2018 are shown in Fig. 2 (left).

The energy sums calculated at Level-1 include the trigger tower scalar sum ET, the jet energy
scalar sum HT, and the missing ET (MET). The Level-1 MET is reconstructed as a vector sum of
all TT energies that exceed predefined thresholds. For optimized pileup mitigation, the thresholds
depend on η and the TT size, and on the amount of pileup, estimated from the number of active
TTs. Efficiency curves for the MET trigger algorithms used in 2018 are shown in Figure 2 (right).
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Figure 2: Left: Efficiency curves for the Level-1 single jet trigger algorithms with different ET thresholds,
as a function of offline-reconstructed anti-kT transverse energy. Right: Efficiency curves for the upgraded
Level-1 MET trigger algorithms with different MET thresholds, as a function of offline-reconstructed type-1
corrected MET with muons excluded. In both cases, the efficiency is measured using an unbiased sample
selected with a single-muon trigger. [6]

The e/γ candidates are identified using dynamic clustering, seeded by a TT with ET > 2GeV.
The clusters are built iteratively, adding neighboring TTs with ET > 1GeV up to a maximum cluster
size of 8 TTs. The clusters are categorized based on the shape of their energy distribution, used
to distinguish between e/γ candidates and hadronic jets. Efficiency curves for a set of single-e/γ

algorithms used in 2016–2018 are shown in Fig. 3 (left). The improvement of efficiency in 2018
compared to the previous years reflects the accumulated experience in optimization of the isolation
criteria.
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Figure 3: Left: Efficiency curves for the Level-1 single-e/γ trigger algorithms with different ET thresholds
in 2016–2018, requiring a loose isolation of the e/γ candidate, as a function of offline-reconstructed electron
supercluster transverse energy. Right: Efficiency curves for the Level-1 single-τh trigger algorithms with
different ET thresholds in 2018, requiring isolation of the τh candidate, as a function of offline-reconstructed
τh pT. [6]
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The τh candidates are identified using a dedicated algorithm, similar to the e/γ algorithm.
Since the fingerprint of a τh decay in the calorimeters can correspond to several e/γ clusters, the
τh identification algorithm is allowed to merge together several energy clusters if certain proximity
conditions are fulfilled [7]. An efficiency curve for a set of single-e/γ algorithms used in 2018 are
shown in Fig. 3 (right).

For e/γ and τh candidates, the position is determined as an energy-weighted average of the TT
positions, yielding a factor of four improvement in spatial resolution compared to Run-1 algorithms
that used the position of the seed TT.

The isolation of e/γ and τh candidates is defined in a 6× 9 TT window centered around the
candidate, and the reconstructed candidate energy is subtracted from the sum. Look-up tables
are utilized for defining pileup-dependent isolation criteria, and for the energy calibration of the
candidates.

4. Conclusions

The upgraded CMS Level-1 calorimeter trigger maintained excellent performance throughout
Run 2, as illustrated in the efficiency curves shown above. The trigger worked in a robust way
despite changes in the LHC filling schemes and ageing of the calorimeter systems. A more com-
prehensive collection of performance measurement results can be found in Ref. [6]. The experience
gained in the implementation and operation of complex electronics systems for triggering, based
on large FPGAs and fast optical links, will be utilized in the upcoming Phase-2 upgrade of the
trigger system for the HL-LHC [8].
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