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We reported a recent work that applies modern Deep Learning (convolutional neural network)
techniques in the context of two dimensional lattice complex scalar field theory, which has a
non-trivial phase diagram at nonzero temperature and chemical potential. Especially we intro-
duced the field configuration production with generative adversarial network (GAN), where the
GAN is showed to be able to automatically capture the implicit local constraint for the physical
configurations and also the underlying physical distribution. We further explored generalize the
configuration production at different parameter space using conditional GAN.
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1. Introduction

Deep Learning (DL) techniques have shown great power in helping the scientific discoveries
in many research areas. Due to its hierarchical structure of artificial neural networks aiming at
representation learning, DL now provides an effective tool for pattern recognition of complex non-
linear systems. In physics there were already a lot of application in areas including nuclear [1, 2,
3, 4], particle [5, 6, 7] and condensed matter physics [8, 9, 10]. Along with its significant progress
in phase transition identification for classical or quantum spin models [11], deep neural networks
has also been considered in the context of lattice field theory numerical simulations [12, 13].

Recently [14] we explored the perspectives of up-to-date DL techniques for two-dimensional
quantum scalar field theory discretized on a lattice, where regressive and generative deep neural
networks (DNN) are applied to unravel the information related to phase status and underlying dis-
tribution. For the investigation the field configurations are generated via standard Monte Carlo
algorithms. In this proceeding we will introduce this work with special focus on the generative
modelling on configuration production. After outline the scalar field theory setup we will first
demonstrate that our generative model can capture the implicit local constraint satisfied by the
physical configurations, we then explore the conditional generative model’s performance in gener-
alize the configuration generation to different parameter space.

2. Two Dimensional Complex Scalar Field

For our considered 1+1 dimensional complex scalar field with quartic coupling λ at nonzero
temperature and chemical potential, there’s an interesting non-perturbative behavior along with
varying chemical potential µ to distinguish two different regimes: at low µ the particle number
density of the system is suppressed (close to zero) referring to as the Silver-Blaze behavior usually,
while above a threshold µ > µth the particle number density increases remarkably. But since the
finite chemical potential introduces complex action and thus hinders standard simulation with the
original field φ , this phenomena cannot be observed directly. By using of the worldline formalism
one can get a real and positive flow representation of the action, where the field can be represented
via integer dual variables kν(x) and lν(x) associated to the links starting at the point x = (x1,x2)

and lying in the direction ν = 1 (space) or ν = 2 (time). The chief steps are an expansion of
the Boltzmann factors with a variable substitution to the polar representation for the filed and a
subsequent integration for the field. kν(x) and lν(x) are the integer expansion variables left in the
final result. By denoting the number of lattice sites in the direction ν as Nν , the total number
of variables for the field is therefore N = 2× 2×N1×N2. To be noted, a zero divergence-type
constraint for the k-integers must be satisfied in the flow representation while the ell-integers can
take arbitrary values,

∑
ν

[kν(x)− kν(x−aν̂)] = 0 , (2.1)

where ν̂ is the unit vector in the ν direction and a the lattice spacing.
With the partition function which is reexpressed using dual variables, different physical ob-

servables of the system can be derived. In particular, the particle density turns to be a simple sum
over the k2 variables while the squared field operator |φ |2 is a highly nonlinear function that de-
pends on all kν and `ν variables. Choosing mass m = 0.1 and coupling λ = 1.0 with lattice size
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Figure 1: Architecture of a generative adversarial network for complex scalar field theory.

N1×N2 = 20× 100 for the system, we generated a low-temperature field configuration ensemble
under a range of chemical potentials 0.91 ≤ µ ≤ 1.05 around the threshold value µth ≈ 0.94 (all
dimensionful quantities are understood in lattice units). For µ < µth, 〈n〉 is almost zero and

〈
φ 2

〉
is constant. In contrast, both observables rise approximately linearly beyond the threshold.

3. Generative Models For Configuration Production

Phase status classification and physical observable regression are supervised learning applica-
tions via discriminative modelling which work quite well as we first explored in Ref. [14]. Being
different from the discriminative (regressive) learning algorithms, which are trained to capture the
conditional probability p(y|φ) for predicting properties y of configurations φ , the generative mod-
els aim to learn the underlying distribution of input variables from the training data for further
density estimation or direct sampling. Generative Adversarial Network (GAN) [15] is thus such a
deep generative model belonging to the unsupervised learning category within deep learning ap-
proaches. The GAN framework contains two non-linear differentiable functions, both of which are
represented by adaptive deep neural networks. The first one is the generator G(z), which maps
random noise vectors z from a latent space with distribution pprior (usually uniform or normal dis-
tribution over z) to the target data space with implicit distribution pG (over data x) that approaches
the desired distribution ptrue through training. The second one is the discriminator D(x) with a
single scalar output, which tries to distinguish real data x from generated data x̂ = G(z). These
two neural networks are trained alternately, thus improving their respective abilities against each
other in a two-player minimax game (also called zero-sum game). An optimally trained GAN
converges to the state (the Nash equilibrium for this game-theory problem), where the generator
excels in ‘forging’ samples that the discriminator cannot anymore distinguish from real data. Such
generative modeling-assisted approaches have been tested in various scientific contexts, including
medicine [16, 17], particle physics [18, 19, 20], cosmology [21, 22, 23] and condensed matter
physics [24, 25]. Here we employ, for the first time, the generative modeling GAN application in
strongly correlated quantum field theory. To ensure training stability, we consider the Wasserstein-
GAN architecture [26] with gradient penalty (WGAN-gp) [27] in this study, see Fig. 1 for the main
architecture.

The generator and discriminator architectures are illustrated in Fig. 2. The generator takes as
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Figure 2: Illustration of our Generator and Discriminator network architectures. The transposed convolu-
tional layer for upsampling is denoted as TConv2D, batch normalization as BN and a fully connected layer
as Dense. For each layer, the dimensionality of the output tensor is specified in brackets.

input a randomly sampled 512-dimensional latent vector z following a multivariate normal Gaus-
sian distribution, and gradually transforms z to the desired configuration space (of dimensional-
ity 200× 10× 4). The up-sampling is done via transposed convolution, which is also known as
fractionally-strided convolution that function backward the convolution operation. The kernel size
for the convolutional layer is 3×3, while for the transposed convolutional layer 4×4. Batch nor-
malization is included to standardize the outputs and to stabilize training. Apart from the last layer
we use the Leaky Rectified Linear Unit (LReLU) as activation function. The discriminator aims to
evaluate the ‘fidelity’ of the configurations. The difference between the output of real data and fake

Figure 3: The absolute divergence per site for configurations from the GAN generator as a function of
training epochs, with (blue) and without (red) rounding configuration entries to its nearest discrete value.
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Figure 4: The mean particle number density on the configurations generated by the cGAN with (blue)
and without (red) rounding configuration entries to its nearest discrete value, against the specified condition
values for n.

data is quantified using the Earth Mover (EM)-distance (also called Wasserstein distance), which
serves as the loss function here. Strided convolution is performed for the down-sampling. Note that
for the first four convolutional layers plain linear activation is used to let the discriminator more
effectively reduce the dimensionality of the input configurations (function like PCA). This helps
the GAN to capture the implicit multimodal distribution (of physical observables), as we will see
below. The generator from the trained GAN can be used to convert samples from the prior distribu-
tion to data points lying in the configuration space. It’s necessary to check whether the generated
data from the network can be regarded as physical configuration or not. Here the divergence-type
constraint Eq.(2.1) is inspected for the trained GAN with an ensemble of configurations at fixed
chemical potential µ = 1.05. Shown in Fig. 3 is the absolute divergence per site for the generated
outputs along with number of training epochs. We see that even though it is not exactly zero, it’s
decreasing and converges to zero with training. As a highly implicit physical constraint inside the
training dataset, Eq. (2.1) is not known to the GAN training. Surprisingly in a converging manner,
the network automatically recognized this constraint for the configurations.

We further investigated the physical observable distribution of the samples generated by the
GAN. As demonstrate in Ref. [14] in detail, the probability density distribution of the number
density n and of the squared field |φ |2 from the GAN agree very well with training data distribution
obtained from the Monte Carlo simulation. In particular, the discrete distribution of n and the multi-
modal distribution of |φ |2 with corresponding ensemble average values all have been automatically
well captured by the GAN.

We further explored the generalization of configuration production with different distribution
that it was trained on, for which the conditional generative adversarial network (cGAN) is deviced.
We showed in Ref. [14] that the conditioning on number density for the GAN training enables the
generator to get the dependency on n for the configuration generation, and thus the trained GAN can
generate configuration with specified number density that not included in the training dataset. Here
as a further bold trial we extend the conditioning to be chemical potential, to investigate how GAN
performs in capturing the µ-dependency of the configuration distribution. Specifically, we feed in
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ensembles of configurations at µ = 0.91,0.98,1.05 to the GAN with the corresponding chemical
potential values conditioned in the training. After training we specify different chemical potential
values for the generator to test its generalization ability. In Fig. 4 we compare the phase diagram via
number density estimation from the cGAN to that from standard Monte Carlo simulation. Note that
only three chemical potential cases are provided for the training, the generalization performance of
the cGAN especially near the critical region is not trivial here. We also tested that small change
for the training chemical potential cases (i.e. µ = 0.91,1.02,1.04) does not induce qualitative
difference in the generated phase diagram. This would need further careful investigation to check
the partition function capturing ability from cGAN.
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