
P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep
learning models

Juan M Cruz-Martinez*, Stefano Carrazza, Roy Stegeman
TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Sezione di Milano
Via Celoria 16, 20133, Milano, Italy
E-mail: juan.cruz@mi.infn.it, stefano.carraza@mi.infn.it,
roy.stegeman@mi.infn.it

Parton Distribution Functions (PDFs) model the parton content of the proton. Among the many
collaborations which focus on PDF determination, NNPDF pioneered the use of Neural Networks
to model the probability of finding partons (quarks and gluons) inside the proton with a given
energy and momentum. In this proceedings we make use of state of the art techniques to mod-
ernize the NNPDF methodology and study different models and optimizers in order to improve
the quality of the PDF: improving both the quality and efficiency of the fits. We also present the
evolutionary_keras library, a Keras implementation of the Evolutionary Algorithms used
by NNPDF.

Artificial Intelligence for Science, Industry and Society, AISIS2019
October 21-25, 2019
Universidad Nacional Autónoma de México, Mexico City, México

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:juan.cruz@mi.infn.it
mailto:stefano.carraza@mi.infn.it
mailto:roy.stegeman@mi.infn.it

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

1. Introduction

The determination of parton distribution functions (PDFs) is a particular topic which strongly
relies on three dynamic and time dependent factors: new experimental data, higher order theoretical
predictions and fitting methodology. There are two main tasks for PDF fitters such as the NNPDF
collaboration [1, 2], MMHT [3] or CTEQ [4]. The first of which consists in maintaining and
organizing a workflow which incrementally implements new features proposed by the respective
experimental and theoretical communities. The second task of a PDF fitter is the investigation of
new numerical and efficient approaches to PDF fitting methodology. While the former relies almost
exclusively on external groups and communities, the latter is under full control of the PDF fitting
collaborations, and in most cases it reflects the differences between them.

In their most generic form, PDFs are functions which depend on an energy scale (usually
labelled Q) and an energy fraction (x) which represents the fraction of the energy of the proton
carried by the parton. Detailed reviews on the topic can be found in Refs. [5–7].

Historically PDFs have been fitted via fixed functional forms which were made more complex
as the amount of available data increased [8–11]. The work presented in this proceedings is based
on the framework developed by the NNPDF collaboration which introduces for the first time in
the PDF determination context the employment of unbiased functional forms in the form of neural
networks to model the parton content of the proton [12, 13].

2. Neural Networks PDF: NNPDF

The target goal in PDF determination is the optimization of the χ2 of the fit. This is a problem
well suited for machine learning techniques, as the functional form is unknown while the input and
output are well defined. The details for the current implementation of the NNPDF methodology
can be found in [2, 14]. An exhaustive overview is beyond the scope of this proceedings, in what
follows we outline some of the most relevant aspects of the NNPDF methodology used in the last
main releases (3.0 and 3.1) as a baseline for our current discussion.

In the NNPDF methodology fits are parameterized at a reference scale Q0 and expressed in
terms of a neural network whose outputs correspond to a set of basis functions. The neural network
consists of a fixed-size feedforward multi-layer perceptron. The input node (x) is split by the first
layer on the pair (x, log(x)). The hidden layers use the sigmoid activation function while the output
node is linear. The functional form of this model is:

fi(x,Q0) = Aix−αi(1− x)βiNNi(x), (2.1)

where NNi is the output of the neural network corresponding to a given flavour i, usually expressed
in terms of the PDF evolution basis {g, Σ,V,V3,V8, T3, T8, c+}. Ai is an overall normalization
constant which enforces sum rules and x−αi(1− x)βi is a preprocessing factor which controls the
PDF behaviour at small and large x. Both the αi and βi parameters are randomly selected within a
defined range for each replica at the beginning of the fit and kept constant thereafter.

Unlike usual regression problems, where during the optimization procedure the model is com-
pared directly to the training input data, in PDF fits the theoretical predictions are constructed
through the convolution operation per data point between a fastkernel table (FK) [15, 16] and the

1

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

xgrid1

xgrid2

...

xgridn

xgridint

NN

Preproc

fitbasis norm

R
o
t
a
t
i
o
n

...

pdf1

pdfn

...

FK1

FKn

Convolution

...

O1

On

Tr/Vl
split

χ2
tr

χ2
vl

Integration

Figure 1: Diagrammatic view of the NNPDF fitting model as implemented in the n3fit code.
Each different block is set as a different Keras layer. The red squared blocks correspond to blocks
with potentially fittable parameters while other blocks represent parameters or transformations
which are fixed during the fit.

PDF model. For DIS-like processes the convolution is performed once, while for hadron collision-
like processes PDFs are convoluted twice (once per hadron).

The optimization procedure consists in minimizing the loss function

Loss = χ
2 =

Ndat

∑
i, j
(D−P)iσ

−1
i j (D−P) j, (2.2)

where Di is the i-th artificial data point from the training set, Pi is the convolution product between
the fastkernel tables for point i and the PDF model, and σi j is the covariance matrix between data
points i and j (following the t0 prescription defined in appendix of Ref. [17]). The covariance
matrix can include both experimental and theoretical components as presented in Ref. [18]. As a
summary, in Fig. 1 a schematic view of the code is represented.

Up to the current NNPDF release (3.1 at the time of writing of these proceedings, Ref. [2]) only
genetic algorithms had been used as the optimizer for the weights and biases of the neural network.
The optimization procedure makes use of the Nodal Genetic Optimizer defined in Ref. [14] and
can be summarized as follows: the weights of the neural network are initialized using a random
gaussian distribution and checking that sum rules are satisfied. From that first network 80 mutant
copies are created based on a given mutation probability and update size. The training procedure
is fixed to 3 · 104 iterations and the best mutant is determined using a look-back algorithm which
stores the best weights for the lowest validation loss value.

The experimental data used in the PDF fit is preprocessed according to a cross-validation
strategy based on randomly splitting the data for each replica into a training set and a validation
set. The optimization is then performed on the training set while the validation loss is monitored to
reduce overlearning.

The codebase driving this methodology has up to now been a fully in-house C++ program.
Such an in-house codebase allowed for a more fine grained control of the details of the methodology

2

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

but, as a consequence, the implementation of new features and studies were hindered by the extra
amount of effort for both developers and maintainers.

3. A new methodology: n3fit

The advances in the field of machine learning have worked their way into the field of PDFs in
the form of a new methodology which inherits directly from NNPDF and has been named n3fit1.
This new methodology has been presented for the first time in [19]. The codebase for n3fit has
been written in Python, with Keras [20] and Tensorflow [21] as the engine behind the training and
construction of the neural network. Other engines can be implemented as most of the codebase is
library agnostic.

This new methodology has successfully introduced several changes to the NNPDF methodol-
ogy and allowed for an improvement of the research results and workflow [19, 22]. Here we focus
on the substitution of the genetic algorithm for an optimization based on gradient descent and on a
comparison with previous results.

3.1 Optimization algorithm: from genetic algorithms to gradient descent

The default minimizer of the C++ version of the NNPDF fitting code (nnfit) is the aforemen-
tioned Nodal Genetic Algorithm (or NGA). The NGA has been used, for instance, in NNPDF3.0 [14]
and NNPDF3.1 [2]. Other evolutionary optimizers have also been implemented in nnfit, such as
Covariance Matrix Adaptation Evolution Strategy (CMA) which was used in the release of hadronic
fragmentation functions [23, 24].

Newer releases by the NNPDF collaboration explore the usage of deterministic minimizers.
The nuclear PDF set nNNPDF1.0 [25] make use of the ADAM gradient descent optimizer [26]
which is closely related to RMSProp [27] and Adagrad [28]. The full NNPDF fitting mechanism
has also been upgraded to support gradient descent optimizers and it has been implemented in
n3fit [19]. The n3fit code supports the usage of the Adagrad, RMSProp and ADAM mini-
mizers as well as any optimizer compatible with the Keras library.

We do a thorough exploration of algorithms previously used by the NNPDF collaboration
and gradient descent based algorithms. In Fig. 2a we observe that the CMA algorithm produces
smoother results than the NGA and thus convergence is improved: the number of outliers is reduced
and postfit selections are less aggressive. We find, however, longer running times, which makes it
unsuitable for our purposes.

For this particular problem we have access to the gradient of the model, as such Gradient
Descend (GD) based algorithms can be expected to outperform evolutionary strategies. In Fig. 2b
we present a comparison between a GD based algorithm and the NGA used in previous releases
of NNPDF. We find that using SGD results in features similar to those we observe when using
CMA, that is, smoother replicas and better convergence. At the same time, the performance is
also improved: computing times are greatly reduced. As a consequence, new lines of investigation
appear which would not have been possible before, such as hyperparameter scans [19, 30].

1We follow the well known trend in High Energy Physics which relates the quality of a calculation to the multiplier
of the letter n in their name.

3

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

(a) Comparison of the NGA algorithm (orange) and
the CMA algorithm (green). The CMA produce a
smoother curve at the cost of significantly longer
running times (up to a factor of two in our tests).

(b) Comparison of the NGA algorithm (orange) and
a gradient descent algorithm (green) for the d quark
inside the proton. The better stability of the deter-
ministic optimizer produces a smoother error band
and central value all across the considered ranges.

Figure 2: Comparison of different algorithms in n3fit in DIS only fit. Note that all of them
produce compatible result within their error bands in the considered ranges. Plots are generated
with reportengine [29].

The gradient descent implementation can comfortably be run in a consumer-grade desktop
computer while the NGA instead has been run on a cluster with the aid of pyHepGrid [31].

The Keras library does not include evolutionary strategies which has motivated us to develop
a new library: evolutionary_keras [32]. This library implements evolutionary strategies
used by NNPDF retaining full compatibility with any Keras model. The fit shown in Fig. 2b based
on the DIS dataset from NNPDF3.1 and labelled GA use the NGA algorithm described in [14] as
implemented in evolutionary_keras and it is compared against the Adadelta [33] optimizer
implemented in the standard Keras library. The engine behind both fits is n3fit.

3.2 Comparison with old methodology

Figure 3: Distribution of computing times for a full DIS and global fit for the NNPDF 3.1 method-
ology (yellow) and n3fit (green). While for the old methodology the computing time for one
replica could take days, the new code achieves similar fit goodness in a scale of hours.

4

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

From a technical perspective, one of the most relevant advantages introduces by n3fit is
the reduction of the computational time required to obtain PDF sets based on the NNPDF3.1
dataset [2]. These improvements are in part due to a combination of the new minimizer based
on gradient descent and the usage of multi-threading CPU calculations when executing the Ten-
sorFlow graph model. In Fig. 3 we show the distribution of computing time in a per-replica basis
(each fit is composed of up to 100 replicas). Note that while a global NNPDF fit with the 3.1
methodology could take up to two days per replica, the same NNPDF fit with the new methodol-
ogy only takes a few hours. Further attempts to reduce these figures are currently underway with
the implementation of custom TensorFlow operators and the usage of Graphical Processing Units
(GPUs) for the FK convolution [22].

10 5 10 4 10 3 10 2 10 1 100

x

0.35

0.40

0.45

0.50

0.55

xd
(x

)

d at 1.7 GeV
n3fit global
NNPDF 3.1 global

10 5 10 4 10 3 10 2 10 1 100

x

0.5

1.0

1.5

2.0

2.5

3.0

xg
(x

)

g at 1.7 GeV
n3fit global
NNPDF 3.1 global

Figure 4: Comparison between the results obtained using the old methodology (orange) and the
new n3fit methodology (green) for two of the partons found inside the proton, the d quark (left)
and the gluon (right). Note that the results are compatible across the entirety of the studied range
with overlapping central values in the region where most of the data is concentrated.

The number of PDF replicas that are necessary for a full fit is also reduced due to the better
replica-by-replica stability that gradient descent methods produce for this problem with respect to
genetic algorithms. This stability is also apparent when we plot the PDF replicas themselves as
seen in Fig. 4 where in green we show the results of the new methodology while in orange those
of the methodology used up to NNPDF 3.1. Nevertheless, the central value only shows a different
behaviour in the extrapolation error (where the lack of data and the size of the errorbar make the
difference irrelevant). In the data region n3fit shows much smoother lines.

4. A modern Genetic Algorithm library: evolutionary_keras

As part of the current research a new library has been developed which aims to implement the
evolutionary strategies used by the NNPDF collaboration. The library has been named
evolutionary_keras [32] and the code is publicly available in the N3PDF repository at
https://github.com/N3PDF/evolutionary_keras. It can easily be installed with the pip package
manager.

~$ pip install evolutionary-keras

It is also included in the conda-forge repository so it can be installed for Anaconda
projects.

5

https://github.com/N3PDF/evolutionary_keras

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

~$ conda install -c conda-forge evolutionary_keras

Documentation for the library is found at https://evolutionary-keras.readthedocs.io where all
available optimizer are listed and some examples of usage can be found.

The library consists of a module which extends the Keras Model class and implements opti-
mizers based on Genetic Algorithms, currently includes the aforementioned NGA and CMA evo-
lutionary strategies. Compatibility with Keras is retained and it can be used as any other Keras
optimizer.

In order to use the capabilities of evolutionary_keras in a project, it is necessary to use
the model-classes provided. These classes inherit from the Keras model class and transparently
defer to them whenever a Gradient Descent algorithm is used.

Below we present one example in which a Keras model is created with some input and output
tensors previously defined. Those familiar with Keras will immediately see the similarities.

1 from evolutionary_keras.models import EvolModel

2 my_model = EvolModel(input_layer, output_layer)

3 from evolutionary_keras.optimizers import NGA

4 my_nga = NGA(population_size = 42, mutation_rate = 0.2)

5 my_model.compile(optimizer = my_nga, loss = 'mean_squared_error')

6 my_model.fit(x = input_data, y = output_data, epochs = 10)

In summary, any Keras Model must become an EvolModel, but it can be instantiated with
the same syntax as can be seen in line 2. From that point onwards the usage is unchanged with
respect to a normal Keras project. In line 4 the genetic optimizer NGA is instantiated with some
initial parameters and then compiled into the model together with one of the default loss functions
included in Keras. For an up to date list of included algorithms, please consult the documentation.

Acknowledgments

The authors are supported by the European Research Council under the European Unions
Horizon 2020 research and innovation Programme (grant agreement number 740006). S.C. and
J.CM are also supported by the UNIMI Linea 2A grant “New hardware for HEP”.

References

[1] NNPDF collaboration, Parton Distributions with Theory Uncertainties: General Formalism and First
Phenomenological Studies, Eur. Phys. J. C79 (2019) 931 [1906.10698].

[2] NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C77
(2017) 663 [1706.00428].

[3] L. A. Harland-Lang, A. D. Martin, P. Motylinski and R. S. Thorne, Parton distributions in the LHC
era: MMHT 2014 PDFs, Eur. Phys. J. C75 (2015) 204 [1412.3989].

[4] T.-J. Hou et al., New CTEQ Global Analysis with High Precision Data from the LHC, 1908.11238.

[5] S. Forte and G. Watt, Progress in the Determination of the Partonic Structure of the Proton, Ann. Rev.
Nucl. Part. Sci. 63 (2013) 291 [1301.6754].

6

https://evolutionary-keras.readthedocs.io
https://doi.org/10.1140/epjc/s10052-019-7401-4
https://arxiv.org/abs/1906.10698
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://doi.org/10.1140/epjc/s10052-017-5199-5
https://arxiv.org/abs/1706.00428
https://doi.org/10.1140/epjc/s10052-015-3397-6
https://arxiv.org/abs/1412.3989
https://arxiv.org/abs/1908.11238
https://doi.org/10.1146/annurev-nucl-102212-170607
https://doi.org/10.1146/annurev-nucl-102212-170607
https://arxiv.org/abs/1301.6754

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

[6] J. Rojo, The Partonic Content of Nucleons and Nuclei, 1910.03408.

[7] J. J. Ethier and E. R. Nocera, Parton Distributions in Nucleons and Nuclei, 2001.07722.

[8] D. W. Duke and J. F. Owens, Q**2 Dependent Parametrizations of Parton Distribution Functions,
Phys. Rev. D30 (1984) 49.

[9] E. Eichten, I. Hinchliffe, K. D. Lane and C. Quigg, Super Collider Physics, Rev. Mod. Phys. 56 (1984)
579.

[10] A. D. Martin, R. G. Roberts and W. J. Stirling, Structure Function Analysis and psi, Jet, W, Z
Production: Pinning Down the Gluon, Phys. Rev. D37 (1988) 1161.

[11] M. Diemoz, F. Ferroni, E. Longo and G. Martinelli, Parton Densities from Deep Inelastic Scattering
to Hadronic Processes at Super Collider Energies, Z. Phys. C39 (1988) 21.

[12] S. Forte, L. Garrido, J. I. Latorre and A. Piccione, Neural network parametrization of deep inelastic
structure functions, JHEP 05 (2002) 062 [hep-ph/0204232].

[13] NNPDF collaboration, A Determination of parton distributions with faithful uncertainty estimation,
Nucl. Phys. B809 (2009) 1 [0808.1231].

[14] NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [1410.8849].

[15] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo et al., A first unbiased global
NLO determination of parton distributions and their uncertainties, Nucl. Phys. B838 (2010) 136
[1002.4407].

[16] V. Bertone, S. Carrazza and N. P. Hartland, APFELgrid: a high performance tool for parton density
determinations, Comput. Phys. Commun. 212 (2017) 205 [1605.02070].

[17] R. D. Ball et al., Parton Distribution Benchmarking with LHC Data, JHEP 04 (2013) 125
[1211.5142].

[18] R. Abdul Khalek et al., A First Determination of Parton Distributions with Theoretical Uncertainties,
1905.04311.

[19] S. Carrazza and J. Cruz-Martinez, Towards a new generation of parton densities with deep learning
models, Eur. Phys. J. C79 (2019) 676 [1907.05075].

[20] F. Chollet et al., “Keras.” https://keras.io, 2015.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro et al., TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015.

[22] S. Carrazza, J. Cruz-Martinez, J. Urtasun-Elizari and E. Villa, Towards hardware acceleration for
parton densities estimation, in International Conference on the Structure and the Interactions of the
Photon (Photon 2019) Frascati, Italy, June 3-7, 2019, 2019, 1909.10547.

[23] NNPDF collaboration, A determination of the fragmentation functions of pions, kaons, and protons
with faithful uncertainties, Eur. Phys. J. C77 (2017) 516 [1706.07049].

[24] S. Carrazza and N. P. Hartland, Minimisation strategies for the determination of parton density
functions, J. Phys. Conf. Ser. 1085 (2018) 052007 [1711.09991].

[25] NNPDF collaboration, Nuclear parton distributions from lepton-nucleus scattering and the impact of
an electron-ion collider, Eur. Phys. J. C79 (2019) 471 [1904.00018].

[26] D. Kingma and J. Ba, Adam: A method for stochastic optimization, International Conference on
Learning Representations (2014) .

7

https://arxiv.org/abs/1910.03408
https://arxiv.org/abs/2001.07722
https://doi.org/10.1103/PhysRevD.30.49
https://doi.org/10.1103/RevModPhys.56.579, 10.1103/RevModPhys.58.1065
https://doi.org/10.1103/RevModPhys.56.579, 10.1103/RevModPhys.58.1065
https://doi.org/10.1103/PhysRevD.37.1161
https://doi.org/10.1007/BF01560387
https://doi.org/10.1088/1126-6708/2002/05/062
https://arxiv.org/abs/hep-ph/0204232
https://doi.org/10.1016/j.nuclphysb.2008.09.037, 10.1016/j.nuclphysb.2009.02.027
https://arxiv.org/abs/0808.1231
https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://doi.org/10.1016/j.nuclphysb.2010.05.008
https://arxiv.org/abs/1002.4407
https://doi.org/10.1016/j.cpc.2016.10.006
https://arxiv.org/abs/1605.02070
https://doi.org/10.1007/JHEP04(2013)125
https://arxiv.org/abs/1211.5142
https://arxiv.org/abs/1905.04311
https://doi.org/10.1140/epjc/s10052-019-7197-2
https://arxiv.org/abs/1907.05075
https://arxiv.org/abs/1909.10547
https://doi.org/10.1140/epjc/s10052-017-5088-y
https://arxiv.org/abs/1706.07049
https://doi.org/10.1088/1742-6596/1085/5/052007
https://arxiv.org/abs/1711.09991
https://doi.org/10.1140/epjc/s10052-019-6983-1
https://arxiv.org/abs/1904.00018

P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
0
8

Studying the parton content of the proton with deep learning models Juan M Cruz-Martinez

[27] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by a running average of its
recent magnitude.” COURSERA: Neural Networks for Machine Learning, 2012.

[28] J. C. Duchi, E. Hazan and Y. Singer, Adaptive subgradient methods for online learning and stochastic
optimization., J. Mach. Learn. Res. 12 (2011) 2121.

[29] Z. Kassabov, Reportengine: A framework for declarative data analysis, Feb., 2019.
10.5281/zenodo.2571601.

[30] J. Bergstra, D. Yamins and D. D. Cox, Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures, in Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume 28, ICML’13,
pp. I–115–I–123, JMLR.org, 2013, http://dl.acm.org/citation.cfm?id=3042817.3042832.

[31] J. Cruz-Martinez, D. Walker and J. Whitehead, pyhepgrid: distributed computing made easy, May,
2019. 10.5281/zenodo.3233861.

[32] J. Cruz-Martinez, R. Stegeman and S. Carrazza, evolutionary_keras: a genetic algorithm library, Jan.,
2020. 10.5281/zenodo.3630339.

[33] M. D. Zeiler, ADADELTA: an adaptive learning rate method, CoRR abs/1212.5701 (2012)
[1212.5701].

8

http://dl.acm.org/citation.cfm?id=3042817.3042832
https://arxiv.org/abs/1212.5701

