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In High Energy Physics, the Monte Carlo simulation of the detector response to the particles
traversing it is one of the most computing intensive tasks. For some applications, a certain level
of approximation is acceptable and it is therefore possible to implement fast simulation mod-
els that have the advantage of being less computationally intensive, in comparison to standard
detailed Monte Carlo techniques. As a consequence, research on fast simulation solutions, in-
cluding deep Generative Models, is very active. 3DGAN is a Generative Adversarial Network
prototype, based on 3 dimensional convolutions, developed to simulate the response of high-
granularity calorimeters. We have previously reported on its physics performance and the results
we obtained by introducing a data parallel approach to accelerate training, using the Horovod
library in conjunction with the Keras and Tensorflow packages. One of the major bottleneck in
the 3DGAN application is the training time. In this contribution we present improved results on
3DGAN distributed training: we report on the reduction of training time and high scaling effi-
ciency up to 256 Intel XeonTM8260 (codenamed “Cascade Lake”) nodes. We demonstrate how
HPC centers could be utilized to globally optimize deep learning models, thanks to their large
computation power and excellent connectivity. In addition we document our preliminary studies
on the use of genetic algorithms as an alternative method to train and optimise neural networks.
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1. Introduction

High Energy Physics (HEP) experiments rely on detailed Monte Carlo techniques to simulate
particle transport through detectors. Experiments at the Large Hadron Collider (LHC) devote today
a large fraction of their worldwide distributed computing power [1], to the simulation task and the
next High Luminosity LHC phase [2] is expected to increase the need for simulated data by a factor
100 [3].

Existing fast simulation techniques are mostly based on parametrization [4, 5] or look-up-
tables [6] providing different levels of accuracy; deep Neural Networks are also being investigated
as alternative solutions [7, 8, 9, 10]. Calorimetes are among the most time consuming detectors
as far as simulation is concerned. In particular next-generation calorimeters are being designed as
highly segm nted array of cells, capable of reaching very high spatial resolution [11]: their output
is a three-dimensional pattern of energy depositions that can be interpreted as pixel intensities in
an 3D image. The work presented in [10] demonstrates the performance of a three-dimensional
convolutional GAN model (3DGAN) to simulate a highly granular electromagnetic calorimeter
designed within the context of the Linear Collider Detector studies [11]. 3DGAN represents the
initial step of a wider plan aimed at providing a generic detector simulation tool based on Deep
Learning, fully configurable for different detector use cases. Our final goal is to prove that, by using
meta-optimization and hyper-parameters scans, it is possible to tune the network architectures to
simulate different detectors.

In this perspective, an efficient training process becomes essential and, therefore, we focus on
optimizing the computing resources needed to train 3DGAN, studying parallelization on HPC cen-
ters and commercial cloud resources [12, 13, 14]. This work presents two main contributions: the
results of the optimisation of 3DGAN inference and training on Intel XeonTMScalable Processors
(Cascade Lake) and the deployment of a distributed training approach over 256 nodes. We also
present initial studies aimed at training and optimising 3DGAN using an evolutionary approach
based on genetic algorithms (GA).

2. Previous Work

Generative Adversarial Networks (GAN) [15] implement the idea of adversarial training us-
ing two neural networks: a generator that reproduces the true data distribution and a discriminator,
typically a classifier, discriminating generated from true examples. Training develops as a mini-
max optimisation process reaching, ideally, a saddle point that corresponds to a minimum for the
generator and a maximum for the discriminator (Nash equilibrium).

The Auxiliary Classifier GAN (ACGAN) follows a semi-supervised approach via the intro-
duction of a label resulting in faster convergence and more stable performance [16]. There have
been many recent variations of GAN: our work combines an ACGAN-like approach with physics-
derived constraints. The LAGAN [17] and CaloGAN [9] models represent the first applications
of GAN to HEP simulation: particle showers in simplified calorimeters are simulated as a set of
two-dimensional images. Further examples are described in [7, 8]. Simulation of highly granular
calorimeters, using true 3D convolutions, to fully exploit the correlations in the volumetric space,
achieves promising results [10].
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As Deep Learning models increase in complexity, model size and training time, the role played
by distributed training becomes of primary importance. Several different algorithms have been
developed in recent years. For instance, in the data parallel approach each process trains a copy
of the whole model on different parts of the data and the models need to stay consistent across
the multiple processes. This results in large communication costs since gradients and/or model
updates are exchanged among the nodes or between the nodes and a parameter server. Most existing
Deep Learning tools and frameworks implement some form of parallel training, typically using
MPI [18] as communication layer. Horovod is one example: it introduces a ring all-reduce pattern
in which each of N nodes communicates with two of its peers 2*(N-1) times, strongly reducing
communication costs [19].

3. The 3DGAN model training and inference processes

The 3DGAN model is extensively described in several publications [10, 20, 21]. It loosely
follows an ACGAN approach, by introducing an auxiliary regression task on the particle energy
to improve convergence and provide insights on the quality of the discriminator training. The
generator and discriminator networks are build as four layers of three-dimensional convolutions.
Batch-normalization and dropout layers are also introduced to improve sparsity and insure regular-
ization. Two dense layers perform the real-fake classification and the auxiliary energy regression
task. Overall, 3DGAN includes slightly more than 1 million parameters. However, it should be
noted that the 3DGAN training process presents a high compute-to-communication ratio given that
three-dimensional convolutions have a cubic computational complexity. The model is implemented
using Keras [22], for its simplicity of use. As for Keras’s backend, we have used Tensorflow [23],
configured and compiled with MKL-DNN [24] support, so that its operations can be well mapped
on CPU-based hardware. The binaries are built with architecture specific flags (AVX512 FMA)
and XLA support.

Once trained, the GANs simulation tool is a relatively lightweight application: a few MB are
enough to describe the layer configuration for the two networks and the inference step is orders
of magnitude faster than a standard Monte Carlo. We have run a test on an Intel XeonTM8180
processor (codenamed “Skylake”) measuring the time it takes to generate one electromagnetic
shower for our benchmark detector. We obtained 17 s/shower using Geant4 [25] and 1 ms/shower
using the 3DGAN model, yielding a speedup factor larger than 20000. Using dedicated hardware,
such as GPGPUs, the generation time could further reduce but we choose not to quote comparison
results since the Geant4 application cannot run on GPGPUs. As explained in [12], training 3DGAN
for on a single Intel XeonTM8160 node (2 sockets, 24 cores each) required slightly less than 5 hours
per epoch using an Intel optimised version of Tensorflow 1.9, linked to Intel MKL-DNN, Horovod
0.13.4 (with IntelMPI) and running 4 worker process per node. These results were obtained on
the Stampede 2 cluster at TACC in 2018. Recent upgrades in the Intel MKL-DNN framework and
Intel optimised Tensorflow 1.14 have improved this results by a factor 2.8 bringing the training time
down to about 1.8 hours/epoch on a Intel XeonTMScalable Processor Platinum 8260, 2 sockets, 24
cores per socket.
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4. Distributed training

Training large neural networks is a computationally intensive task, taking a substantial amount
of time, from several hours to days or even weeks. For instance, training 3DGAN for 30 epochs
on an Intel XeonTMScalable Processor Platinum 8260, requires slightly more than two days. Par-
allelizing the training workload is thus critical to obtaining results in a timely manner. To speed
up this part of the workflow, we leverage the power of modern supercomputers and decrease the
training time.

In this work, we distribute the 3DGAN training via a data parallel strategy, given the limited
communication requirements of the 3DGAN architecture. In addition, gradients are updated using
a synchronous approach, due to the more controllable nature of synchronous stochastic gradient
descent and the relatively limited straggling effects. Finally we use more than one worker per node
to maximize the hardware efficiency as described in the sections below. Horovod in the distribution
framework, is configured to use Intel MPI, optimized for shared memory communication within a
single node and interconnection fabric across multiple nodes. The tests are run on the Intel Endeav-
our cluster, in particular on the CLX-SP partition composed of dual-socket Intel XeonTMScalable
Processors Platinum 8260 CPUs, 24 cores each, 192GB RAM. The interconnection fabric is Intel
OmniPath. Best result are obtained with 2 MPI processes per node (1 per socket), with tuned Ten-
sorflow interop and intraop parallelism threads and processes pinned to separate NUMA domains
in order to minimize NUMA effects.

Figure 1: (blue) Training time per epoch on the TACC’s Stampede 2 system [12]. (red) Training time per
epoch on the Intel Endeavour cluster (Intel XeonTMScalable Processors Platinum).

Figure 1 compares the results we obtained on the Endeavour cluster to the 2018 benchmarks
described in [12]. Tensorflow optimisation improves the single node results by a factor 2.8. Dis-
tributing the training across multiple nodes yields linear scaling and less than 53 seconds/epoch
using 128 nodes (compared to 149 seconds/epoch in [12]). Training time on 256 nodes is reduced
to 29 seconds/epoch and convergence is reached in less than 15 minutes. The scaling efficiency, up
to 256 nodes, is around 98%. No major communication bottleneck is observed.
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In general, using a large number of nodes, the effective batch size has a negative impact on
physics performance: we observe some degradation on the 256 nodes run in the low energy region;
as an example, Figure 2 shows the ratio between the total energy deposited in the calorimeter
estimated by the generator and the primary particle energy as a function of the primary particle
energy. The 256 training result (green) overestimates the total energy deposited at the low end of
the spectrum. Further studies are on-going to better characterize this loss in physics performance.

Figure 2: Ratio between the total energy deposited in the calorimeter and the primary particle energy as
a function of the primary particle energy. (blue) The Monte Carlo prediction obtained using Geant4 [26].
(red) single node 3DGAN prediction. (green) 256 nodes 3DGAN prediction: the total deposited energy is
overestimated, the effect is larger at lower primary particle energies.

5. Genetic Algorithms for Deep Neural Networks optimisation

Hyper-parameters scans are among the simplest way to optimise a neural network architecture
for the task at hand. However, the deeper the neural network, the longer is the time required for an
exhaustive search, since training and evaluation of every single instance increases. In this context,
the training time can be reduced using a distributed approach as explained in the previous sections
and in addition, efficient search strategies can be adopted: Bayesian optimisation, reinforced learn-
ing and genetic algorithms (GA). Here we explore the GA approach as an alternative to stochastic
gradient descent (SGD) for training and hyper-parameter optimisation and we present some initial
results.

A GA is a meta-heuristic often used as an iterative search algorithm in many domains where
problems are complex or poorly defined. The solution parameters are encoded in a “chromosome”
that is evolved according to the principle of best fitness. In the context of deep learning, the param-
eters encoded in a chromosome can be the network weights [27, 28, 29, 30] (training process) or the
network hyper-parameters [31, 32, 33, 34] (architecture optimisation). As an example of GA-based
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network training, Deep Neuroevolution [29] trains a four millions weights deep neural network us-
ing a supervised learning approach. In order to reduce computing resources, distributed training
is implemented as well as a compression technique for encoding of chromosomes. In [35] carte-
sian genetic programming is used to optimise a convolutional neural networks (CNN) architecture:
CNN kernels are encoded as nodes in a graph with connections defined by the chromosome. The
fitness evaluation is carried out using stochastic gradient descent.

The genetic algorithm can also be used to optimise the network topology as well as its weights,
combining the training ad optimisation process and resulting in a faster and more efficient gener-
alization approach, especially when combined with distributed training. However, as of today, a
successful implementation of the combined architecture and weight training has yet to be demon-
strated for CNNs. Here, we describe a preliminary test using a GA as an optimizer for training
a CNN and we compare performance to standard SGD approach. We plan to extend this work
incorporating architecture search and distributed training.

5.1 Implementation and evolutionary strategy

For our initial test we setup a regression problem on the two dimensional projection of the
3DGAN data along the transverse plane. To reduce the dimensionality of the problem from 3D
to 2D we project the calorimeter three-dimensional images along one of the transverse dimension
thus retaining the longitudinal development of the particle showers. Loosely following the struc-
ture of the 3DGAN discriminator network, effectively a CNN, we build a regressor CNN with a
single convolutional layer and a single dense layer estimating the projected energy. The network
is initialized using M random parents drawn from uniform distributions. The 1+λ evolutionary
strategy is employed with elitist selection selecting a single parent with lowest loss and generating
λ children. Each individual is defined by a chromosome consisting of a set of weights.

The evolutionary operator is a point mutation. The initial implementation is similar to [29] em-
ploying the point mutation controlled by two parameters: the mutation rate (µ) and the mutation
power (mp). The mutation rate denotes the fraction of the weights to be mutated. The mutation
power set a threshold for the weight updates. The actual update to the weight is the product of
sampling from a uniform distribution [-1, 1] and the mutation power. The GA objective is a min-
imization task defined by the relative error on the regression task. The training is performed in
batches given the large data size. Some initial tuning of the GA hyper-parameters resulted in the
optimal set summarized in Table 1.

No. Param Description Value
1 Weight mutation Sampling random weights N (µ, σ2)

2 M Number of random parents at initialization 8
3 λ Number of offsprings 8
4 Bias Constant term added to weighted sum for a neuron 0
5 Data size Number of events used for training 5,000
6 Batch size Data samples used in a single evaluation/iteration of

the algorithm
128

Table 1: Parameters selected for GA
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5.2 Results and Discussion

We compare the regression performance of the GA-trained network to that of a network trained
using RMSprop [36] on a small sample of 5000 images. Figure 3 shows (left) how the training loss,
defined as a relative error, changes through the epochs: it can be seen that GA achieves low loss
values very quickly but RMSprop eventually reaches a lower loss. The estimated energy is also
shown in Figure 3: the network trained using RMSprop has a lower error and steady performance
along the whole energy range; the GA trained network performance is not as accurate but the
resulting error stays well below 10% over the whole energy range.

Figure 3: Regression results for GA (red) vs. RMSprop (blue). (left) Test losses. (right) Estimated energy.

This initial exercise suggests that a GA can be used to successfully train a CNN: the result is
currently not as accurate as RMSprop but additional tuning might lead to comparable performance.
Our plan is to continue this investigation and develop a methodology for combining network train-
ing and architecture otpimisation.
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