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A critical infrastructure is a complex interconnected system of systems providing basic and 
essential services to support the operation of particle accelerators but also industries and 
households for which they must guarantee high reliability of critical functions. 

Model-based approaches are usually adopted to provide an early identification of failures and to 
reveal hidden dependencies among subsystems. System models are complex and require constant 
updating to be reactive to system changes and real operating conditions, wear and aging. The 
interconnections between the different systems and the functional dependencies between their 
components are in many cases modified at both physical and functional levels while their 
degraded performances impact the overall system availability and reliability.  

A novel approach is proposed which combines model-based and Big Data analytics by machine 
learning techniques to extract descriptive and predictive models directly from data. The objective 
is to foresee and react in time to failures to reduce downtimes as well as to optimize maintenance 
and operation costs.  

The Computer-Aided System for critical infrastructure Operation (CASO) is designed to 
significantly and efficiently enhance the quality, safety, reliability and availability of critical 
infrastructures. 

We report on the design of CASO, its implementation and on the preliminary results inferred on 
historical and live stream data recorded from CERN’s technical infrastructure. Proposal for the 
full deployment and expected long-term capabilities will also be discussed. 

 

 
 
 
 
Artificial Intelligence for Science, Industry and Society, AISIS2019 
October 21-25, 2019 
Universidad Nacional Autónoma de México, Mexico City, México 
 
 



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
4
1

CASO Luigi Serio 

2 

1. Introduction 

Critical infrastructures [1, 2] provide essential services for our modern society requiring 
high reliability and availability. The early identification of failures is essential to prevent any 
disruption of service.  

A smart framework [3, 4] for the availability and reliability assessment and management of 
accelerators technical facilities has been proposed to support the analysis, to guide the operation 
and improve the overall efficiency of the process. The framework provides an integrated 
environment to collect data from heterogeneous sources (sensors, alarms, logbooks), implements 
mining and machine learning techniques to infer functional dependency models and fault logic 
models, and dynamically updates them to follow the evolution of CERN [5] Technical 
Infrastructure [6].  

2.System framework concept 

A Computer-Aided System for critical infrastructure Operation (CASO) is being developed 
as a primary tool for the extraction and analysis of critical infrastructure functional and physical 
dependencies from alarms and measured physical parameters. CASO will not only smartly guide 
the operation of critical infrastructures but also identify critical components requiring 
maintenance or consolidation based on algorithms modelling the nominal operation and extracting 
features to anticipate failure, wear and tear, and ageing. The developed techniques and framework 
will significantly and efficiently enhance the quality, safety and availability of critical 
infrastructures serving society, industrial manufacturing and production, as well as research. 
Nowadays, Big Data represents one of the most valuable resources for the management of large, 
medium and small enterprises. The expression Big Data usually refers to information with a 
volume, velocity and variety that cannot be processed using classical database management 
technologies and data analysis techniques. This huge volume of data is not the only characteristic 
that makes data Big. By definition, Big Data also includes the concept of unstructured data, which 
is nowadays increasing due to the wide diffusion and high availability of digital information.  

The use of machine learning for the analysis and interpretation of Big Data is an observed 
trend applied in several heterogeneous domains. It can be used in healthcare by considering huge 
amounts of medical data, symptoms, and clinical reports for supporting medical decisions. 
Machine learning is widely applied for the failure analysis and remaining useful life estimation 
of automotive and aircraft engines. NASA, for example, defined several statistical approaches for 
the anomaly detection of cruise flight data, based on historical data of previous flights. In this 
case, thanks to the statistical model, they can identify anomalies in cruise data, simply by looking 
for outliers produced by the model. 

The critical component to be analysed (the engine, the valve, the pump, the bearing, etc.) 
must be first identified by experts and operators. In fact, each analysis provides information on 
the specific component but not on the way a failure can affect and/or propagate to the rest of the 
infrastructure in which the component is present. Furthermore, the applied machine learning 
algorithms are mostly supervised and therefore driven by knowledge that guide and sometime 
limit the outcomes that can be obtained. 

CASO innovatively proposes the ambitious goal of exploiting all the available data sources 
at the infrastructure level, and in particular alarms, reports, logs, and physical data and, without 
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any apriori knowledge, to infer components, sub-systems and systems availability, reliability and 
dependencies models and to identify autonomously critical components of the infrastructure in 
need for deeper analysis, maintenance and consolidation. 

The identification of intersystem dependencies is a key task for the efficient operation of 
critical infrastructures. The evolution of such dependencies, due to changing operational 
requirements and consolidation activities, makes it difficult to accurately maintain the information 
up to date and ensure the coherence of the information. In general, the interconnections among 
the different systems and the functional dependencies between their components are in many cases 
modified with respect to the initial design, both at the physical and functional levels.  

Given the importance of dependent failures propagation on the overall system risk, 
reliability, and availability analysis, CASO’s ability to identify the intersystem dependencies 
among components of different systems and of sets of interconnected components will bring 
several benefits: 

- An accurate estimation of the critical infrastructure reliability and dependability, 
which is sometimes not well-estimated if the dependencies are hidden; 

- The ability to anticipate or, at least, to react in time to failures, with a significant 
reduction of downtimes in the provided services; 

- The identification of critical components and locations of the infrastructure to 
improve maintenance planning and guide consolidation strategies. 

3.System design methodology 

A critical infrastructure is a complex interconnected system of systems providing basic and 
essential services such as electrical power distribution, cooling, heating and ventilation, access 
and safety systems, and IT. 

The availability of economical, high-efficient and smart sensors brings Big Data but their 
volume and their heterogeneity make them difficult to analyse and to integrate in the modelling 
process.  

The data collected and stored undoubtedly contains critical knowledge on dependencies. In 
this project a novel approach is proposed which combines model-based and Big Data analytics by 
machine learning techniques to extract descriptive and predictive models directly from data, to 
foresee and react in time to failures thus reducing the downtimes of components and systems. 

The Computer-Aided System for critical infrastructures Operation (CASO), can infer and 
interpret data coming from different and heterogeneous sources and systems, to extract descriptive 
and predictive models and to suggest mitigation and consolidation strategies for the performance 
enhancement of complex systems and infrastructures. 

CASO can discover and track hidden dependencies of components and subsystems, to 
prevent failures, to analyze and guide maintenance and operation activities, to reduce cost and 
downtimes, and to increase quality, safety, availability and reliability of services and processes. 

According to the high-level schema of the approach shown in Figure 1, the critical 
infrastructure chosen for the design and the development of the framework is CERN technical 
infrastructure. 
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Figure 1 - Reference architecture of the Smart Framework 
 
CERN technical infrastructure is a representative example of a critical infrastructure 

composed of several subsystems, each one responsible for a given critical functionality (e.g. 
distribute electrical power, cooling fluids, provide essential communication systems, etc.). Each 
subsystem is composed of thousands of components and is managed by a different monitoring 
system. A monitoring system collects all data related to the subsystem: physical signals of the 
equipment, reports, and logs related to failures, expert evaluations, maintenance interventions, 
installation dates of equipment and more. 

The engine of CASO is a machine-learning core, composed of algorithms developed for the 
component-level and high-level system dependencies analysis.  

Furthermore, CASO will be dynamically linked to an enterprise asset management system 
to select the most appropriate and efficient maintenance program and to guide and implement the 
required consolidation strategies to tackle aging problems of components, whilst maintaining the 
highest level of performance at a reasonable cost.  

4.Envisioned innovation potential and applications 

Machine learning is nowadays an enabling technology for the scientific advancement of 
small and medium sized enterprises, as well as large companies and organizations dealing with 
huge amount of available operational data.  

CASO, as by design, will become an industrial-driven tool to be integrated into the 
monitoring and control systems of critical infrastructures, system of systems and even 
combinations of infrastructures directly or indirectly linked. It will consist of a user-friendly 
interface, adaptable and self-tuning algorithms, and a dependencies detector, to perform 
components and system-level analysis.  

Once operational, CASO will progressively provide continuous and updated information on 
dependencies, performances and reliability at components and systems level, to smartly guide the 
operation, maintenance and consolidation of critical infrastructures. All the above will positively 
and efficiently affect and improve the operation of research facilities, industry, public utilities, 
and therefore society as a whole. 
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A non-exhaustive list of possible application are:  
- Smart cities exploit ICT (Information and Communication Technologies) to provide 

city essential services such as energy and fluid distribution, transportation and 
medical services. CASO would make it possible to consider the dependencies 
among the different public services and to increase the quality and efficiency of the 
services provided to the citizens. For example, by knowing the dependencies 
between the energy grid, transportation, and medical services, it would be possible 
to elaborate emergency plans to be activated timely in case of failure of one or more 
components or systems. Moreover, it would be possible to efficiently consolidate 
and maintain several interconnected energy grids ensuring, at lower capital and 
operation cost, the same level of services or even their improvement without 
additional investments;  

- Public healthcare infrastructures are essential for the management of medical 
services as well as for the continuous monitoring of the diffusion of diseases within 
several communities. Data collected from hospitals, public and private clinics and 
other medical offices, allow several organizations to define epidemic disease 
diffusion scenarios and strategies to counteract. CASO would enhance the analysis 
of the diffusion scenarios and definition of strategies considering dependencies 
among healthcare, transport, utilities and other infrastructures or systems;  

- Manufacturing industry and supply chains, which are essential drivers of the 
individual countries and world economies. Exploiting the scalability of CASO to 
extract dependency models among heterogeneous infrastructures and 
manufacturing processes, would allow identifying and tracking manufacturing 
flaws and inefficient processes. This will result in the anticipation and mitigation of 
potential impacts on energy consumption, production, services and processes as 
well as guaranteeing the safe and efficient operation of manufactured products (e.g. 
failure of components in power plants, aircraft engines, and transport sectors).  

5.Proof of concept and case studies 

The proof of concept of CASO’s Smart Framework is being developed, implemented and 
tested on CERN technical infrastructure, which can be compared to a small city in size and a 
nuclear power plant in complexity. 

CERN technical infrastructure is a large and complex critical infrastructure consisting in 
several systems of systems and components that provide a significant number of heterogeneous 
data. Existing maintenance and operation databases will ease the implementation of a 
comprehensive tool to store dependencies and models. 

CERN technical infrastructure has been analysed and three heterogeneous subsystems have 
been identified to develop the proof of concept algorithms for the detection and analysis of hidden 
patterns and interdependencies. Representative components have also been chosen, to implement 
algorithms for component level analyses. 

The data pipeline has been defined with proper connectors and software tools to extract and 
organize data collected by each monitoring system and required supporting hardware. 

A scalable prototype of CASO based on the chosen subset of components and subsystems 
on a representative portion of the LHC accelerator has been developed, including: 



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
4
1

CASO Luigi Serio 

6 

- An analysis module for each of the selected representative components; 
- The methodology and algorithms for unsupervised inter-system dependencies 

detection; 
- The user interfaces with the data connector, to integrate the Smart Framework in the 

existing infrastructure monitoring environment. 
Equipment responsibles and system experts provide the validation of the outcomes of 

component-level and system-level analysis algorithms, each expert owning a deep knowledge of 
its respective components and subsystems.  

5.1Systems and components dependencies: LHC point 8 infrastructure hidden 
dependencies analysis 

CERN’s Technical Infrastructure is a complex systems of systems (figure 2), with numerous 
sub-systems and thousands of components. These are tightly interdepenent and interconnected 
physically, functionally, distributed over a large geographical area. Furthermore they are 
represented by heterogeneous data set composed of physical measurements, alarms and text 
reporting. Local malfunctions and perturbations quickly and easily propagate through highly 
dependent group of components and can cause a cascade of failures with major consequences for 
the reliability and availability of the accelerator complex. 

 

 
Figure 2: CERN’s Technical Infrastructure 
 
It is not easy to performe vulnerability and resiliance modelling with classical methods 

analysing functional dependencies [7, 8] both from the complexity point of view and the 
continuous evolution of the installations. 

A novel methodology [9] has been proposed to analyse large databases of alarms generated 
by the monitoring system and infer dependencies between systems and components to identify 
critical systems, mitigate and eliminate causes of downtime. 
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The methodoloy to identify system and components dependencies is based on the 
representation of the alarm database usign a binary matrix and the extraction of association rules 
using the Apriori algorithm. 

The proposed methodology has been first tested on an artificial test dataset and then 
succesfully applied to a real large scale database of alarms from 1/8 of the CERN accelerator 
infrastructure (the LHC Point 8 technical infrastructure), comprising components and subsystems 
of three of the major infrastructure systems: the LHC cryogenic, cooling and ventilation and 
electrical systems. All systems are deeply interconnected and present significant risks of cascade 
propagation of failures. 

More than 10'000 malfunctions have been identified from a database of almost 20 million 
of alarms collected during one year of operation. The Apriori algorithm was able to extract several 
association rules identifying abnormal behaviour of groups of components across the three 
different systems. More than 1'000 rules were extracted, of which more than 100 across the three 
different systems and 8 new functionally dependent malfunctions identified and confirmed by 
systems and equipment experts. 

 

  Electric 
system 

Cryogenic 
system 

Cooling and ventilation 
(CV) systems 

Total LHC 
Zone 8 

No. of malfunc-
tions types 9,655 1,472 2,324 13,451 

No. of alarms  16,034,050 2,607,030 70,657 18,711,737 
 
Table 1: Number of malfunctions and alarms during one year of operation of CERN 

Technical Infrastructure in Point 8 
 

 Rules 

Total No. of rules extracted 1031 

No. Causal cross systems rules 147 

No. of groups of functionally dependent malfunctions 8 

 
Table 2: Rules extracted and number of functionally dependent malfunctions identified 

5.2Critical components identification: the electrical network perturbations 

CERN’s electrical network distributes electrical power to the whole accelerator complex and 
impact directly (power converter controlling the beam trajectory via superconducting magnets) 
and indirectly (cooling and cryogenic systems providing the required temperature conditions for 
the superconducting magnets nominal operation) the operation of the colliding beams. 



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
4
1

CASO Luigi Serio 

8 

Electrical disturbances are generated inside the CERN electrical network (e.g. components 
short circuits or failures) or outside coming from the French and Swiss feeding grids (e.g. 
thunderstorms, network failures). They can easily propagate and impact the operation of sensitive 
components such as the sensitive power converters controlling the beam trajectory or the high 
power compressors of the cryogenic systems. When the electrical disturbance is detected, the 
impacted components are shut down to avoid damages or loss of control. The propagation of 
perturbations through the network cannot easily be modelled as it depends on several features, 
layout and operating modes. 

A significant amount of the overall LHC machine downtime has been caused in the past by 
electrical disturbances. The identification of the sensitive components and the identification of 
the propagation path of the disturbances can significanty reduce or mitigate the downtime. 

A dataset of electrical disturbances (several thousands) and affected components (few 
hundreds) with (48) or without beam dump has been analysed using a novel method [10] based 
on binary classifiers, which associates monitored signal values to nominal operation and failed 
states. The identification of critical components has been performed using a wrapper feature 
selection approach based on a binary differential evolution and cost sensivitive support vector 
machine classification. More than 5'000 components (e.g. electrical transformers, UPS, 
distribution switchboards) and more than 10'000 signals (e.g. power, voltage, current) have been 
analysed. 

The results showed that the 18 kV power distribution level is the most sensitive to the 
perturbations coming from the 400 kV level. In particular the power converter system connected 
to the 18 kV transformers are the most sensitive to the perturbations. 22 selected features and 19 
critical components have been identified in specific zones of the LHC machine around the 27-km 
accelerator ring. The false detection rate is 7 % and the missed detection rate is 25 %. 

 
Figure 3: CERN’s electrical distribution network and critical components areas 

Sector 4 
Sector 5 

Sector 6 

Sector 1 
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5.3Anomaly detection: beam collimators temperatures sensors failure 

Early detection and diagnosis of the failures of critical components is paramount to ensure 
high reliability and availability. An estimate of the Remaining Useful Life of equipment can 
provide critical information to improve the reliability and availability of the system as well as 
optimize the maintenance and consolidation interventions. 

A proof of concept based on deep learning and random forest algorithms has been developed 
and tested on the temperature sensor of beam intercepting devices, the LHC collimators. The 
models provide the estimated nominal beahviour of the temperature sensors signals and their time 
evolution. The modeled signal is compared with the actual measured values to detect and 
anticipate failures of the sensors due to normal and abnormal (e.g. radiation, environmental 
conditions) ageing. Anticipated detection of the failures provides the possibility of performing 
predictive maintenance and prevent a critical component failure during beam operation. The 
detction threshold is optimised and tuned by sweeping through a set of values to maximise the f-
score as show in figure 4. 

The results in figure 4 show the reached accuracy of 95 % in detecting failing sensors and 
the capability of anticipating by several hours their breakdown. 

 
 

Figure 4: F-score maximisation curves and results table 
 

6.Further development 

Big Data analytics, the developed machine learning techniques and the preliminary results 
obtained in the proof of concept of the CASO framework have proven to be successful on several 
use cases.  Descriptive and predictive models were successfully extracted directly from data. 

Data Set tuning test 

Total Samples 42 79 

True Positives 21 23 

True Negatives 20 52 

False Positives 1 4 

False Negatives 0 0 

F-1 Score 0.98 0.92 

Mean time detection 
to event [h] 

 
13.73 

 
3.19 

Accuracy 97.60% 94.90% 



P
o
S
(
A
I
S
I
S
2
0
1
9
)
0
4
1

CASO Luigi Serio 

10 

The objective to detect critical components and predict anomalies to react ahead of time to 
failures in order to reduce downtimes and optimize maintenance and operation costs has been 
demonstrated. 

CASO will be extended to the whole LHC Technical Infrastructure and linked to the 
Enterprise Asset and Maintenance Management framework to provide operation and maintenance 
analytics and guidance to anticipate maintenance and consolidation. 
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