
P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction of pixel vertex detectors
with FPGAs

G. Punzi∗c f , W. Baldinib, G. Bassice, A. Contua, M. Dorigod , R. Fantechic, F. Lazzaricg,
M.J. Morelloce, S. Strackac, G. Tucic f , G. Vitalice†

aINFN, Sez. di Cagliari,bINFN, Sez. di Ferrara, cINFN, Sez. di Pisa,dINFN, Sez. di Trieste,
eScuola Normale Superiore, Pisa, f Università di Pisa,gUniversità di Siena
E-mail: giovanni.punzi@pi.infn.it

The LHCb experiment is undergoing a major upgrade in view of Run-3, in which the complete
detector will be read out, and events fully reconstructed, at the full LHC crossing rate (averaging
30 MHz). One of the key steps of event reconstruction is finding tracks in the new, high precision
pixel vertex detector (VELOPIX). This step is the necessary starting point for most of the rest of
the reconstruction, and requires a significant fraction (close to a half) of the total CPU time that
will be availabe in the upgraded Event Filter Farm. We present the current status of a LHCb R&D
project devoted to accelerating this computation by the use of an array of commercial state-of-
the-art FPGA cards embedded in the DAQ system, performing pattern recognition in the vertex
detector ‘on the fly’, while the detector is being readout at 30 MHz.

The 28th International Workshop on Vertex Detectors - Vertex2019
13-18 October, 2019
Lopud, Croatia

∗Speaker.
†on behalf of the LHCb Real-Time Analysis project

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:giovanni.punzi@pi.infn.it


P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

1. Introduction and background

The power and sophistication of the data processing in HEP has been steadily increasing
throughout the history of the field. This growth has been propelled to a great extent by the quick
pace of progress of general–purpose CPUs for the consumer market, providing flexible computing
power and data storage at ever–decreasing costs. Today, the slowdown of Moore’s law, and the
features of a physics landscape calling for more and more precision measurements, have created a
need for more effective, specialized computing solutions.

While this is an issue for most future high–intensity HEP programs (as apparent from other
contributions to this same conference as well), it is of particular importance and urgency for the
upgraded LHCb experiment, due to some of its specificities. LHCb, with its large rate of signal
events, small but requiring complex analysis, is facing significant challenges already from the
upcoming Run-3 of the LHC, due to start in year 2021 [1].

In Run-3, LHCb is making major changes, not only to its detector, but also to the structure
of its data acquisition system, that is going to embrace a real-time analysis model [2]. The rate
of reading out the complete detector will jump from about 1 MHz to 30 MHz, as there will be
no Level-0 filtering anymore. The increase of luminosity to 2× 1033 will lead to more complex
event with multiple primary collisions, where heavy flavors will be produced in the majority of
beam crossings. Each event will therefore need a complete reconstruction and analysis before
the trigger can decide whether the crossing is worth saving to permanent storage; even then, the
number of events to be stored will be so large that a much greater recourse to a reduced event
format ("Turbo") is planned. In those data there will be limited information on which to base an
offline re-reconstruction; that means the online reconstruction will need to be particularly good
and complete. And it must also be remembered that, due to its physics goals, the pT thresholds of
LHCb need to be kept an order of magnitude lower than in High-Pt experiments, leading to track
rates comparable to what they have at much higher luminosities (≈ 5 · 1034). All of those effects
conjure in creating a particularly large strain on the computing resources of LHCb.

In view of these challenges, the LHCb collaboration is exploring various ways to increase
its data processing capabilities by the adoption of more specialized computing solutions, that can
relieve part of the load from the shoulders of general-purpose CPUs. One of these solutions is
mentioned in LHCb’s Expression of Interest for a future upgrades [3], that the LHCC has recently
recommended to turn into a TDR on the timescale of a couple of years. The idea there is to
implement a highly parallel computational architecture in state-of-the-art FPGA devices to perform
reconstruction of downstream tracks1 in real time, before the High-Level trigger process begins,
and actually before the event is even built – moving in a direction that might ultimately lead to a
reconstruction completely embedded within the detector readout.

The reason for the focus on downstream tracking is it being particularly hard to perform on
general purpose CPUs, which comes from the large amount of combinatorics involved, and its
potential to unlock a significant amount of physics in the decay of long-lived particles and states
that decay into them – but the same technology can be applied equally well to any parts of the
tracking, or even to non-tracking detectors. While studies are ongoing to fully develop the design
of this new ambitious device [4], aimed several years into the future, it is very important to develop

1These are LHCb tracks reconstructed with only the forward part of the tracking, with no use of vertex detector hits

1



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

and prove the technology by testing it in some smaller and cheaper pilot application that can be
realized on a shorter timescale. This is the subject of the present contribution.

As a pilot application, we have chosen reconstruction of tracks within the LHCb’s vertex
detector (VELO) [5]. This is a crucial part of the detector, detecting charged particle in the region
closest to the interaction point, with the purpose of reconstructing primary and secondary vertexes
with a spatial resolution smaller than typical decay lengths of b- and c-hadrons in LHCb. Its
reconstruction is the first necessary step of LHCb’s reconstruction pipeline, and takes about a half
of the total HLT1 time budget by itself, so it is by no means a small application. However, the
amount of data involved is just about 10 % of the total, so it can be handled by an FPGA system of
modest size and cost, making it an ideal first test-case.

2. General Architecture

The main technology at the core of our system is a highly-parallel architecture for pattern
recognition going under the name of “artificial retina” 2 due to its attempt at mimicking some
structural features and general principles found in the organization of the natural neural network
responsible for fast vision processing in biological life [6]. The retina architecture was designed for
real-time pattern recognition with very low latencies, avoiding any buffering or time-multiplexing,
just as in natural vision systems. This is obtained by a design focused on extreme parallelism
and generous use of the huge bandwidths made available by modern FPGA devices [7, 8]. These
features lead naturally to a “transparent” implementation within the data acquisition of LHCb,
allowing to perform reconstruction “on the fly” while the detector is being read out.

Detector	  front-‐end	  electronics	  

Eventbuilder	  network	  

Eventbuilder	  PCs	  	  (so8ware	  	  LLT)	  

Even=ilter	  Farm	  
~	  80	  subfarms	  

U
X8

5B
	  

Po
in
t	  8

	  su
rf
ac
e	  

subfarm	  
switch	  

TFC	  500	  

6	  x	  100	  Gbit/s	  

subfarm	  
switch	  

Online	  
storage	  

Clock	  &
	  fast	  com

m
ands	  

8800	  
VersaQle	  Link	  	  

throRle	  from	  
PCIe40	  

Clock	  &	  fast	  
commands	  

6	  x	  100	  Gbit/s	  

Figure 1: The architecture of Upgraded LHCb readout-system.

2For simplicity we will refer to it as the retina algorithm in the following.

2



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

The general structure of the Upgraded LHCb Data Acquisition, as described in the LHCb
online TDR [2], is shown in Fig. 1. The LHCb Event Builder (EB) will be composed of about 500
rack-mounted PC boxes (“nodes”), each equipped with an optical Data Acquisition card (PCIe40),
hosted by 16-lane Gen3 PCIe[2]. Each PCIe40 card receives data from the front-end over up to
48 optical links, reading out from a specific piece of the detector located in the experiment cavern.
Data from several bunch-crossings are merged into a multi-event fragment packet (MEP) to reduce
the message rate and ensure efficient network usage. For each MEP one PC is elected to be the
event-builder PC; all non-elected PCs will send their MEP to this PC through the Event-Builder
Network. Event-building is then performed by the receiving node by combining all MEP containing
data from the same bunch-crossings in a single piece of data. Complete events are then sent via a
LAN to the CPU farm (Event Filter Farm, EFF), running the High-Level Trigger software (HLT).

In order to fit our project seamlessly within this system, we need to intercept data at the exit
of the PCIe40 card, reconstruct it, and inject in the MEP before it is sent over for building. In this
way we can attain our goal of a fully-embedded reconstruction, that remains transparent to the rest
of the system. By residing before the event-building process, our system can be made to receive
just the data coming from the detectors of interest and nothing more, leading to smaller and more
modular computing solutions. We will implement our system as a set of identical PCIe-hosted
FPGA cards, each supporting a fragment of both the switch and the processing blocks of the retina
system, appropriately broken down and distributed across nodes. This leads to a conveniently
uniform and scalable system. Cards with the needed features are commercially available today at
reasonable costs due to the large diffusion of network/telecommunication technology. They have
the low-latency response needed to operate within the EB requirements, and are easily integrated in
the EB by insertion in an available PCIe slot in each EB node connected to the detector of interest.

PCIe40

Event Builder PC #1

Memory 
Buffer

Tracking Board #1

data tracks

……….

……….

Patch Panel

PCIe x16

PCIe40

Event Builder PC #N

Memory 
Buffer

Tracking Board #N

data tracks
PCIe x16

Event Builder Network

100 Gb/s 100 Gb/s

Event Filter Farm

100 Gb/s100 Gb/s

Figure 2: Scheme of processing system integrated in the Event Builder architecture.

3



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

Each of our cards (Tracking Boards in Fig. 2) needs a copy of the information delivered by
the PCIe40 card, will process it through the retina structure collectively formed by whole array
of boards, receive back the necessary data for some specific piece of the parameter space, and
re-inject such data via PCIe in the buffer memory of the PC, for merging with the MEP for that
event. The data output by each card of our system maps a specific piece of the track parameter-
space, while its input data and the remainder of the event with which it is merged are mapped
to a geographical portion of the detector. In order to perform this collective process, our FPGA
cards need to communicate quickly among themselves in a manner independent from the EB. We
achieve this by external optical connections, using an architecture bearing a close similarity with
the "Catapult" system designed by Microsoft to accelerate Bing on clouds with distributed FPGA
accelerators[9]. All optical connections will be routed via a passive patch panel (bottom of Fig. 2).

3. Implementation

As part of the LHCb upgrade, the current VELO will be replaced by a new detector, based on
silicon pixel technology [5]. The new VELO will consist of 52 modules positioned along the beam
axis, both upstream and downstream of the nominal interaction point. Pixels are 55µm×55µm in
size, but a particle crossing a VELO layer will often activate more than one, so that to reconstruct
the position of the hit several contiguous pixels may need to be grouped into a cluster. This is
currently achieved by a clustering algorithm running as part of the HLT1 reconstruction code, but
in order to execute our project of reconstructing VELO tracks upfront of the HLT1, we need to
realize this function in the FPGA as well. We therefore had to develop a piece of firmware for
this specific purpose. This has become a significant part of the overall project because, although
simpler than tracking, it is still non-trivial to perform clustering in a 2-dimensional space at the rate
needed to process the whole VELO at the full crossing frequency of the LHC. In fact, it takes some
non-negligible fraction of the HLT1 CPU-time budget to perform (about 20%). This has already
been described elsewhere [10], and will be the subject of a full paper to appear, so it will only be
briefly summarized here.

3.1 Clustering of VELO pixels with FPGA

The main idea to make the algorithm fast enough was to allocate individual logic units to each
pixel, and have them communicate with each other to perform the cluster pattern recognition in a
fully parallel way; this exploits some of the same concepts of the retina tracking. The 2D clustering
firmware we produced has rather general applicability, and we made the core code available via an
open-access repository [11].

Pixel data are read out from the VELO in the format of 2×4 blocks, called SuperPixels (SP).
Clusters produced by real particles typically consist of just a few pixels (1-4). Due to this, a signif-
icant fraction (about 2/3) of the clusters are contained within a single SP (“isolated SuperPixels”).
This makes it convenient to deal with this type of clusters separately. During readout, isolated SPs
are flagged, and for each of the 256 possible SP configurations, a pre-calculated cluster position
is available in a lookup table (LUT). In this way, reconstructing clusters contained in a single SP
requires a very small amount of FPGA resources and is very fast. Finding clusters involving SPs

4



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

with neighbors (i.e. active SPs next to at least an active SP) requires instead to actually execute a
clustering algorithm, and are dealt with separately.

Given the large number of pixels in the VELO, and the fact that in each individual event
only a small fraction of pixels are activated (< 0.1%), we gave up on allocating a large matrix
encompassing the 4.1× 107 pixels of the VELOPIX detector, and created instead a limited set of
smaller matrices (5×3 SPs, i.e. 10×12 pixels), to be mapped in real-time to the relevant locations
of the detector. Inside each matrix, for every pixel configuration matching a pattern, the 3× 3
cluster candidate is then resolved by a lookup table. This makes our firmware significantly more
compact, and a good candidate to be fitted inside the readout FPGA itself, thus realizing not only
an economy of space and time, but also a greater adherence to our long-term vision of embedding
data reconstruction within the readout chain to the maximum possible extent.

This algorithm has been implemented in VHDL language, and deployed to a development
board endowed with two large Intel Stratix-V FPGAs, each holding about 1 MLE. Simulated pixel
data produced by the official simulation of the VELO detector have been stored in a circular buffer
and fed to the clustering firmware in a continuous loop, with tunable frequency. The output is
buffered and compared bit-by-bit to the output produced by a detailed high-level software emu-
lation of the algorithm. Using data coming from the busiest silicon sensors (those closest to the
beamline) it was found that our clustering firmware is capable of running without errors up to a
sustained rate of of 39 Millons of events/s. This is an underestimate of the performance we will
have in the actual application, that uses a faster FPGA than the Stratix-V model used in this test.

This has established the technical feasibility of doing cluster reconstruction in firmware at the
LHC crossing rate, and integration of our code with the VELO readout firmware that will run in
the PCIe40 readout cards in Run-3 is now in an advanced stage. However, verification of physics
performance is also necessary, since our algorithm has some intrinsic differences from the CPU im-
plementation. For this purpose, a bit-level simulation of the FPGA clustering algorithm has been
written and integrated in the official LHCb simulation and reconstruction software environment. In
this way it has been possible to feed the clusters produced by our algorithm to the official HLT1
tracking code, and compare high level performance measurements like reconstruction efficiencies,
clone and ghost rates with those obtained with the standard CPU-based clustering code, using ex-
actly the same comparison code and criteria [12]. In order to stress-test the algorithm, we processed
a sample of 25000 minimum-bias events simulated with the nominal conditions of the LHCb up-
grade: center of mass energy

√
s = 14TeV and luminosity L = 2 · 1033 cm−2s−1. We looked not

only at the average efficiency of all clusters, but also specifically at the first three hits on each track,
that have the highest relevance to the accuracy of determination of the track vertex of origin, that
is of course the most crucial quality parameter in heavy flavor studies. The results, displayed in
Table 1, show that the tracking performances obtained using our FPGA clustering algorithm differ
by just fractions of a % from the full-fledged CPU algorithm, making them essentially equivalent
for all practical purposes.

Further performance checks and final verification of compatibility with the LHCb readout are
now being performed, ahead of a decision on whether to adopt this firmware as the new Run-
3 baseline for cluster finding in the VELO detector. This is independent of the possible use of
clustering in a future FPGA-based tracking project, whose status is described in the next section.

5



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

VeloClusterTracking (CPU) FPGA + VeloClusterTracking

 Velo tracks
efficiency 95,519% ± 0,014% 95,258% ± 0,014%
clone 1,365% ± 0,008% 1,421% ± 0,008%
hitEffFirst3 95,21% 94,51%

 Long tracks
efficiency 97,705% ± 0,013% 97,493% ± 0,014%
clone 1,291% ± 0,010% 1,361% ± 0,010%
hitEffFirst3 95,70% 94,96%

 Ghost tracks 0,8745% ± 0,0041% 1,0217% ± 0,0045%

Table 1: Summary of physics performances of the HLT1 tracking algorithm for different types of track,
using clusters produced inside HLT1 and the FPGA. VELO-tracks are defined as having clusters on three
or more VELO layers. Long tracks additionally have at least one x and one stereo cluster in each tracking
station downstream the LHCb magnet, and are the most commonly used tracks in LHCb physics analyses.

3.2 Track Pattern Recognition

Having established a way to perform clustering in real time enables us to consider the possi-
bility of performing track pattern recognition in FPGAs as well. This is the heaviest part of HLT1
reconstruction; together with clustering, it consumes about half of the HLT1 time budget.

The complete VELO is composed by 52 modules, arranged in 26 layers. Each module is read
from a separate readout card into the EB, so that there are 52 readout units for the VELO. For the
purpose of the current studies aimed at a pilot system that can be implemented within a limited
time and budget, we elected to use only data from layers 8 to 26. Those modules are positioned at
positive values of z, where z = 0 corresponds to the nominal interaction point (Figure 3), and they
hold most of the data relevant to the reconstruction of forward-going tracks produced in the vicinity
of the primary interaction, that are the crucial ingredient for the HLT1 trigger. The remaining 7
layers located at negative values of z are important for the reconstruction of segments of tracks
going in the backward direction, whose main use is to optimize the accuracy of the determination
of the primary vertex, and are dealt with separately in the current CPU reconstruction software. We
decided to postpone their processing to a separate study.

3.2.1 Optical network

Obviously, in order to find tracks it is not sufficient to work on local detector information, but
it is necessary to move data between different modules appropriately. We do this over a fast optical
network, according to a plan dictated by the retina architecture. While the high-level design of such
network is well understood, its practical realization is not without challenges, and a demonstration
of its feasibility was identified as one of the main milestones during LHCb’s internal review of the
project, so it is a significant focus of our activity. The plan is to connect the 38 cards of the VELO
system to build 4 or 5 sub-nets connected by limited–bandwidth bridges. Each sub-net will be a
8–node full-mesh bi-directional networks of optical link, each carrying between 12 and 28 Gb/s
of data in each direction. This is not too different from the network topology of the previously
mentioned CATAPULT system [9]. In order to demonstrate the feasibility of this network, a test
has been performed on a prototype of one such sub-net, which is the crucial part to demonstrate due
to the large density of connections. The test has been performed on the same development platform
used for the clustering tests (with 96 bidirectional optical links), by implementing 4 virtual nodes
on each physical FPGA device.

6



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

The test successfully demonstrated operation of the whole network up to its full bandwidth ca-
pacity (in excess of 1 Tb/s), with low Bit Error Rates (typically < 10−16), low connection latency
(' 250 ns), and no reduction of the throughput of the overall RETINA processing. Performance
was unaffected even when large fixed skews were introduced between the inputs, to test the ro-
bustness of the system to timing skews in the inputs. This is a very promising step towards the
final demonstrator, currently being assembled within the LHCb DAQ Vertical Slice, that will verify
the behavior and stability of the system in conditions as close as possible to the actual running
conditions of Run-3.

Figure 3: Layout of the upgraded VELO. The detector consists of two retractable halves, each housing an
array of 26 silicon pixel detector modules. The red rectangle indicates the modules of interest for forward-
track reconstruction

3.2.2 Parameter space matrix

The intrinsic 2D nature of the RETINA architecture makes it complex to operate in a large
multi-dimensional parameter space. We therefore segmented the 3D track parameter space in 10
slices running along the z axis. In this way we can have sufficient reconstruction acceptance over
the entire (rather wide) distribution of primary vertex along the LHCb beam crossing point. We
instantiate several retina matrices, each tuned to a different z-slice, and each of them running the
RETINA algorithm in parallel, independently of the others. Each retina matrix represents a 2D
piece of the parameter space of a track, using for coordinates the x and y intercept of the track with
a fixed-position reference layer. Tracks with different zvtx may happen to be reconstructed in more
than one z-slice; the possibility of multiple solutions is avoided by having each matrix perform
a check on the z of minimum distance to beam of every found track, to ensure it belongs to the
correct fiducial region. As a final step, remaining ambiguities need to be sorted out and possible
spurious hits rejected before performing the final fit of track parameters. This might be better left
to the HLT1 with the benefit of the most accurate alignment information; a decision has not yet
been made on this point.

The size of the acceptance region in z depends on the individual cell sizes, that in turn is con-
strained from below by the need of limiting the needed amount of FPGA resources, and constrained
from above by the multiplicity of hit combinations/ambiguities within each cell. We choose to al-
locate to each slice a matrix of 100× 100 = 10000 cells, as this produces a good uniformity of
acceptance along z and, at the same time, a limited number of multiple combinations within the

7



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

same cell. There is still a significant space of possible configurations to search, and the setting we
currently use might be further optimized in future.

To test the physics performance of our system we developed a standalone, bit-level software
emulation of our retina processor. As for the clustering emulator, this software package doubles as
a diagnostic/monitoring tool (for experts) and as a detailed simulator for physics analysis users. We
wrote another small piece of code to import the list of track candidates produced by our emulator
in the LHCb framework; the final combinatory reduction is then run, and the produced track is
finally formatted and plugged into the standard LHCb HLT1 sequence. The rest of the standard
reconstruction is then run, using our own tracks in place of the tracks produced by the CPU-based
VELO reconstruction. Again this allows us to run exactly the same performance diagnostics on
exactly the same samples, switching between the two reconstruction methods. We define a fiducial
region where we expect uniform acceptance. For the current configuration, this is 2 < η < 5 and
−20 cm < zvtx < 20 cm, where η is the pseudorapidity. We have additionally restricted the set of
tracks to those with at least 5 hits, as those with less hits are of lower quality and rarely enter
physics analyses.

The performances obtained on a sample of simulated Bs → φφ decays (Table 3.2.2) demon-
strate that the HLT1 algorithm performance is only negligibly affected when running on tracks
produced by FPGAs. Even if we include marginal quality tracks with less than 5 hits, the effi-
ciency of the FPGA reconstruction is still within less than a percent from the CPU reconstruction
in the majority of cases.

One adverse effect of the multiple z-slices is the creation of a larger number of clones than in
the CPU case. This is well understood, and it is due to the fact that we have not yet introduced any
information exchange between the different z-slices, so some tracks get duplicated in more than
one slice. We plan to deal with this effect within the same solution we will use to deal with the
residual ambiguities mentioned previously.

Track type ε CPU pat-reco (%) ε FPGA pat-reco (%)
all z fiducial z

Long tracks
with p > 5 GeV/c 99.84±0.02 99.27±0.06 99.45±0.05

and hits in VELO> 5
Long tracks from b
with p > 5 GeV/c 99.61±0.13 99.24±0.21 99.41±0.18

and hits in VELO> 5
Long tracks from c
with p > 5 GeV/c 99.89±0.12 98.50±0.53 98.62±0.53

and hits in VELO> 5

Table 2: Summary of efficiencies of the VELO tracking algorithm for different type of tracks using both
the CPU-based and the FPGA-based pattern recognition algorithm. Numbers obtained on 1000 B0

s → ΦΦ

events. The efficiency is calculated using Long tracks with 2 < η < 5, p > 5 GeV/c and with more than 5
hits (Monte Carlo truth) in the VELO detector. Tracks belong to the fiducial region if the z coordinate of the
origin vertex is located between -200 mm and 200 mm.

8



P
o
S
(
V
e
r
t
e
x
2
0
1
9
)
0
4
7

Real-time reconstruction with FPGAs G. Punzi

4. Conclusions and Outlook

After several years of R&D, we are now getting close to the first realization of a FPGA-
based 30-MHz tracking, based on extreme-parallelization "retina" architecture. Detailed simulation
studies show that this extremely fast tracking is achieved with quite good tracking performance, and
there is still more room for optimization.

The whole system is implemented with commercially available parts, that makes it easily
upgradable as FPGA devices continue to improve and get cheaper. The approach seems promising
for applications to Phase-II LHCb real-time reconstruction needs and other future experiments.

Integration of the optical network prototype has started in the LHCb DAQ Vertical-Slice test
setup. Extensive tests will be carried out over the next few months, that are expected to provide
precious on-the-field experience with this novel methodology.

5. Acknowledgements

This work would not have been possible without the generous support of INFN (also via the
targeted R&D project ’RETINA’), of Scuola Normale Superiore (Pisa), and the active cooperation
of the members of LHCb’s Real Time Analysis, Online, and VELO projects.

References

[1] The LHCb Collaboration, Framework TDR for the LHCb upgrade, CERN/LHCC 2012-007, 2012.

[2] The LHCb Collaboration, LHCb Trigger and Online Upgrade Technical Design Report,
CERN/LHCC 2014-016, 2014.

[3] The LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in
flavour physics, and beyond, in the HL-LHC era,CERN/LHCC 2017-003, 2017.

[4] M.J.Morello et al., Real-time reconstruction of long-lived particles at LHCb using FPGAs, presented
at ACAT 2019, to appear in J. Phys.: Conf. Ser.

[5] The LHCb Collaboration, LHCb VELO Upgrade Technical Design Report, CERN/LHCC 2013-021,
2013

[6] L. Ristori, An artificial retina for fast track finding, Nuclear Instruments and Methods in Physics
Research A453 (2000) 425.

[7] A. Abba et al., A specialized track processor for the LHCb upgrade, Tech. Rep. CERN/LHCb-PUB
2014-026, 2014.

[8] R. Cenci et al., Development of a High-Throughput Tracking Processor on FPGA Boards,
PoS(TWEPP-17) 136.

[9] A. Caulfield et al., A Cloud-Scale Acceleration Architecture, in Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture, 2016.

[10] F. Lazzari et al., Real-time cluster finding for LHCb silicon pixel VELO detector using FPGA,
presented at ACAT 2019, to appear in J. Phys.: Conf. Ser.

[11] G. Bassi et al., FPGA implemention of a fast 2D clustering algorithm doi:10.15161/oar.it/23524

[12] The LHCb Collaboration, LHCb Tracker Upgrade Technical Design Report, CERN/LHCC 2014-001,
2014

9


