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The Early Stages of Heavy Ion Collisions
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Heavy ion collisions pose interesting challenges to quantum chromodynamics, because they probe
the parton structure of the incoming nuclei at very small longitudinal momentum fractions. Com-
bined with the large size of nuclei, this may lead to the phenomenon of gluon saturation. The
Color Glass Condensate is an effective QCD description that aims to cope with such a situation.
In this talk, I show how one may study heavy ion collisions in this framework.
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The Early Stages of Heavy Ion Collisions

Lattice QCD has taught us that nuclear matter should undergo a transition at high temperature
and/or density, by which the quarks and gluons confined into hadrons in ordinary conditions be-
come deconfined. These conditions of temperature and density were most certainly reached in the
early Universe, but the deconfined nuclear matter present at those times did not leave any visible
imprint accessible to present day astronomy. These critical conditions can also be briefly accessed
by colliding heavy nuclei at very high energy, as performed by the RHIC and the LHC. From the
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Figure 1: Left: collisions of dilute and dense projectiles. Right: color currents and radiated gauge field.

point of view of QCD, the main difficulty in studying these collisions is the fact that the nuclei are
probed in a regime of large gluon density. In fact, not only the standard formalism of parton dis-
tributions becomes inadequate because it does not provide any information regarding multi-gluon
distributions, but also gluons in this regime undergo non-linear interactions that limit the growth
of their density, a phenomenon known as gluon saturation [1]. The color glass condensate [2] is an
effective description of hadrons or nuclei in the dense regime, in which the projectiles are treated
as color currents flowing along the light-cone. These currents are eikonally coupled to the gauge
fields and become strong (of order g−1) in the saturated regime, which leads to a peculiar power
counting [3],

∼ gnE−2︸ ︷︷ ︸
ext. lines

(h̄g2)nL︸ ︷︷ ︸
loops

(gJ)n j︸ ︷︷ ︸
sources

, (1)

where the number of insertions of the currents is irrelevant in the saturated regime (each connected
vacuum graph is of order g−2). In general, observables in the saturated regime are obtained as
the sum of an infinite number of graphs, including both graphs connected to the measured gluons
and disconnected vacuum graphs. Inclusive observables are considerably simpler since the discon-
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Figure 2: Diagrammatic expansion for a generic observable.

nected vacuum graphs drop out [3]. For instance, gluon production is determined at leading order
uniquely by the sum of all the tree diagrams, i.e., by the classical solution of Yang-Mills equations
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The Early Stages of Heavy Ion Collisions

(moreover, one can show that this solution must obey a null retarded boundary condition):

NLO = , + + + + + . . .= (2)

An important question in the context of heavy ion collisions is that of the thermalization of the
produced gluonic matter. Immediately after the collision, this matter is far off-shell, made of color
fields whose electric and magnetic components are parallel to the collision axis [4]. Consequently,
the initial longitudinal pressure is exactly the opposite of the energy density. By solving numeri-
cally the classical Yang-Mills equations, one observes that the longitudinal pressure increases and
reaches positive values at a time Qsτ ∼ 1, but never becomes comparable to the transverse pressure
(in fact, at leading order, this system appears to be a free-streaming collection of gluons) [5, 6].
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Figure 3: Time evolution of the transverse and longitudinal pressures at leading order.

The next order is made of all the one-loop graphs, in the presence of the external currents
representing the projectiles, as illustrated here:

OLO [J] =
J

space

time

, ONLO [J] = (3)

In the case of inclusive observables, such a one-loop correction can be related to the leading or-
der contribution [7]. The causal nature of the classical field encountered at leading order plays a
crucial role in these manipulations. Loosely speaking, this amounts to first extending the origi-
nal observable so that it depends on a field with a non-null initial condition, and then to note that
the one-loop correction to this generalized quantity can be obtained by the action of an operator
which is quadratic in derivatives with respect to the initial value of the field. Diagrammatically, this
relationship reads

ONLO [J,Ain] =

x0 = -∞

, ONLO [J,Ain] =

c
la

s
s
ic

a
l

q
u

a
n

tu
m

, (4)
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The Early Stages of Heavy Ion Collisions

while a more precise version is

ONLO [J,Ain] =

[
h̄
2

∫
d3xd3y Γ(x,y)

δ

δAin(x)
δ

δAin(y)

]
OLO [J,Ain]. (5)

In this equation, Γ(x,y) is a two-point function at equal times (both times being at x0→−∞). This
formula tells that in order to obtain the NLO, one should take the LO, remove two instances of the
initial field and connect the handles thus freed by the link Γ(x,y) in order to form a loop.

In the regime of strong sources, this manipulation brings an extra factor g2, as expected for a
loop. However, this power counting is upset in situations where the classical solutions are unstable.
In this case, perturbing the initial condition generally leads to an exponential growth controlled by
the Lyapunov exponent. Furthermore, this exponent is proportional to the number of points where
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Figure 4: Exponential growth of perturbations to a classical solution.

the initial condition is perturbed. Based on this, one can easily see that the graphs with the fastest
growth are those depicted in Figure 5. The sum of all these graphs can be generated simply by

Figure 5: Graphs with the fastest growth.

exponentiating the operator in eq. (5),

Oresummed [J,Ain] = exp

[
h̄
2

∫
d3xd3y Γ(x,y)

δ

δAin(x)
δ

δAin(y)

]
OLO [J,Ain]

=
∫ [

Da
]

exp
[
− 1

2 h̄

∫
x,y

a(x)Γ−1(x,y)a(y)
]

OLO [Ain +a]. (6)

The second line is an exact alternate representation of the action of this exponentiated operator,
more suitable for a practical implementation. Indeed, it indicates that this resummation can be
obtained as an average over classical solutions, obtained by superimposing Gaussian fluctuations
to the LO initial condition (this resummation is known as the Classical Statistical Approximation).
The function Γ is known both in scalar theory and in Yang-Mills theory [8]. Some examples of
applications [9, 10, 11] of this resummation is shown in Figure 6, in the case of a φ 4 scalar field
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Figure 6: CSA results in scalar field theory.

theory (known to have unstable classical solutions due to a parametric resonance). As one can
see, the particle distribution evolves towards the equilibrium one (but in this case, it is a classical
distributions, of the form T/(ω−µ)−1/2), and one also observes the isotropization of the energy-
momentum tensor for a longitudinally expanding system.

However, the application of the CSA with these initial conditions is hindered by a severe
sensitivity on the ultraviolet cutoff (e.g., the lattice spacing). Indeed, the fluctuations added to the
classical field are zero-point vacuum fluctuations, and the CSA breaks the renormalizability of the
original theory by considering certain graphs but not all of them. Within quantum field theory,
the Kadanoff-Baym equations (also known as the 2PI formalism) would provide a renormalizable
scheme that resums the relevant contributions for thermalization. Unfortunately, its application to
expanding systems has been so far limited to a proof-of-concept study [12] due to its challenging
difficulties.
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Figure 7: Kinetic theory results. Top left: isotropization in an expanding system of scalar fields [13]. Top
right: isotropization in Yang-Mills theory [14]. Bottom left: comparison with hydrodynamics [14]. Bottom
right: the two attractors of kinetic theory for a longitudinally expanding system [15].
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A much simpler to implement alternative, that requires additional approximations (quasi-
particle approximation, gradient approximation), is kinetic theory. Various studies based on solving
Boltzmann equation have been performed, teaching the following insights:

• The zero-point fluctuations are crucial for the isotropization of the energy-momentum ten-
sor in an expanding system (indeed, one may easily remove the corresponding terms in the
collision kernel of the Boltzmann equation – doing so prevents isotropization).

• Isotropization is rather rapid, and the hydrodynamical behavior is observed significantly be-
fore full isotropization is achieved. Moreover, the validity of the classical approximation is
much shorter than previously believed: Qsτclass� α

−3/2
s .

• A system undergoing longitudinal expansion has only two attractors: a free-streaming attrac-
tor for times small compared to the collision time, and an isotropic attractor when the time is
large compared to the collision time.

Although these findings have been obtained in the approximate framework of kinetic theory (in
particular, it cannot cope with the fact that the longitudinal pressure can be negative and the quan-
tum fields are subject to instabilities at early times – something one may see in the right figure 6),
it would be rather surprising if these qualitative behaviors were changed significantly by going to
the more fundamental framework provided by the Kadanoff-Baym equations. However, to ascer-
tain these observations, it would certainly be desirable to perform a similar study using the 2PI
framework.
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