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Light front quantum theories W. N. Polyzou

1. Introduction

In 1939 E.P. Wigner [1] showed that a necessary and sufficient condition for quantum observ-
ables, (probabilities, expectation values, and ensemble averages) to have the same values in all
inertial coordinate systems is the existence of a unitary ray representation of the component of the
Poincaré group connected to the identity. In order to satisfy the commutation relations involving
boost and translational generators,

[Ki,P j] = iδi jH,

interactions must appear in at least three of the Poincaré generators.
In 1949 P.A.M. Dirac [2] identified three representations of a relativistic dynamics with the

largest interaction independent subgroups of the Poincaré group. The kinematic subgroups iden-
tified by Dirac include the Lorentz group (point-form dynamics), the three-dimensional Euclidean
group (instant-form dynamics), and the subgroup of the Poincaré group that leaves a hyperplane

x+ := x0 + ẑ ·x = 0

tangent to the light cone invariant (light-front dynamics). This last subgroup is a seven-parameter
subgroup, while the Lorentz group and three-dimensional Euclidean groups are six-parameter sub-
groups. Relativistic quantum theories where there are no interactions in the generators of this
seven-parameter subgroup are called light-front quantum theories. Light-front representations have
the smallest number of generators that require interactions.

The seven-parameter subgroup that leaves the light-front hyperplane invariant includes (1) a
three-parameter subgroup of translations tangent to the hyperplane (2) a three-parameter subgroup
of light-front preserving Lorentz boosts and (3) a one-parameter subgroup of rotations about the
longitudinal, (ẑ), axis. In the SL(2,C) representation the light-front Lorentz transformations are
represented by the subgroup of lower triangular matrices:

Λ f b(p/m) =

( √
p+/m 0

p⊥/
√

p+m
√

m/p+

)
light-front boosts

Λ f r(φ) =

(
eiφ/2 0

0 e−iφ/2

)
rotations about ẑ

where the corresponding 4×4 Lorentz transformations are Λµ
ν = 1

2 Tr(σµΛσνΛ†). The generators
of the transverse boosts and the longitudinal rotations also satisfy the commutation relations of the
two-dimensional Euclidean Lie algebra.

The light-front Hamiltonian, P−, is one of the three dynamical generators. It satisfies the
light-front dispersion relation

P− := H− ẑ ·P =
P2
⊥+M2

P+
.

One property that distinguishes a light-front dynamics from Dirac’s other forms of dynamics is
that a light-front hyperplane is not a suitable initial value surface because it has light-like tangent
vectors.

In order to compare spins of particles in different inertial frames, it is useful to boost to a
common frame where the particle’s spins can be compared. The frame most often used is the
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particle’s (or system’s) rest frame, but the spin defined this way depends on the boost used to
transform to the rest frame, since a boost right multiplied by a rotation is still a boost. The light-
front spin is defined using light-front preserving boosts:

Si
f =

1
2 ∑εi jkΛ

−1
f b (P/M) j

µΛ
−1
f b (P/M)k

νJµν

where Jµν is the angular momentum tensor, and the parameters, P/M, in the boosts are operators.
Because the light-front preserving boosts form a subgroup, they cannot generate Wigner rotations.
This means that light-front boosts leave the light-front magnetic quantum numbers unchanged.

One interesting property of a light-front dynamics is that the rest frame is defined by the
dynamical constraint P− = P+ = M. This means that the conditions that determine the rest frame
of free and interacting systems do even commute. This has dynamical implications for the spins,
because even though the light-front boost are kinematic, the rest frame, where spins in different
frames are compared, is dynamical.

A basis for a particle of mass m and spin s can be constructed out of simultaneous eigenstates of
the mass, spin, and four other mutually commuting functions of the Poincaré generators. They can
be taken as the generators of translations tangent to the light-front hyperplane and the longitudinal
component of the light-front spin:

M2,S2,P+,P1,P2︸ ︷︷ ︸
P̃

,S3
f .

The single-particle basis vectors are
|(m,s)p̃,µ〉.

Lorentz covariance of the four-momentum and angular-momentum tensors determine both the
transformation properties and spectra of these observables. The resulting transformation property
of a mass m spin s irreducible representation of the Poincaré group is:

U(Λ,a)|(m,s)p̃,µ〉= eip′·a
∑
ν

|(m,s)p̃′,ν〉

√
p+′

p+
Ds

νµ [Λ
−1
f b (p′/m)ΛΛ f b(p/m)]

where Λ f b(p/m) are light-front boosts from the rest frame to p̃ and p′ = Λp.
While the light-front spin is invariant with respect to light-front boosts, it undergoes Wigner

rotations under ordinary rotations. More importantly, the light-front Wigner rotation of a rotation is
not the rotation. What this means is that if a system of non-interacting particles is rotated, the spin
of each particle will rotate with a different angle that depends on the particle’s momentum. This
means that light front-spins cannot be added with ordinary SU(2) Clebsch-Gordan coefficients.

In order to add light-front spins for systems of free particles it is necessary to boost to the sys-
tem rest frame, transform the light-front spins to canonical spins, add the canonical spins and orbital
angular momenta, then boost the back to the original frame with a light-front boost. The coeffi-
cients of the resulting unitary transformation are the Clebsch-Gordan coefficients for the Poincaré
group in a light-front basis. The rotations that transform the light-front spins to canonical spins,
are called Melosh rotations. They involve a light-front boost followed by an inverse rotationless
(canonical) boost,

RM(p/m) = Λ
−1
cb (p/m)Λ f b(p/m).
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It is more convenient to treat systems of particles in a many-body basis where the internal
degrees of freedom are invariant with respect to light-front boosts. These variables include the
total light-front momenta, light-front momentum fractions, the transverse single-particle three mo-
menta transformed to the kinematic rest frame with light-front boosts, and the light-front magnetic
quantum numbers. These variables have the property that only the total light-front momentum
transforms under light-front boosts; all of the other variables are invariant.

Dynamical light-front models can be constructed by adding kinematically invariant interac-
tions to the non-interacting light-front Hamiltonian

P−→ (P2
⊥+M2

0 +V )/P+

of a many-particle system. Allowable interactions must preserve the spectral condition and result
in a self-adjoint P−. Rotational covariance is an additional non-trivial dynamical constraint. These
conditions can be realized in few-body models. When P− is self-adjoint the dynamics is well-
defined and given by a one-parameter unitary group, so in this case the self-adjointness of the
light-front Hamiltonian ensures that there is no ambiguity associated with the bad initial value
surface.

The Light-front representation has advantages for computing current matrix elements. There
are several reasons for this. First, since the boosts are kinematic, boosts of the initial and final states
can be computed by applying the inverse boost to arguments of the light-front wave function, which
is normally expressed in a non-interacting multi-particle basis. In addition, because the light-front
boosts form a subgroup, the light-front spins in the initial and final states of the the current matrix
elements are frame independent. If the momentum transfer is space-like, the orientation of the light
front can be adjusted so all current matrix elements can be expressed in terms of matrix elements
of I+(0), and these matrix elements are invariant under light front-boosts. Another unique feature
of the light-front representation is that for one-body (impulse) current operators the momentum
transferred to the system is the same as the momentum transferred to the constituents in all frames
related by light-front boosts. This is not the case in Dirac’s instant or point-form dynamics, however
in the light-front case for spin greater than 1/2 there are more current matrix elements than there
are independent form factors. The additional current matrix elements are related by dynamical
rotational covariance.

A true covariant current in a dynamical model cannot be a one-body operator and satisfy
current covariance and current conservation. Impulse approximations can be made by assuming
that the two-body current vanishes on a set of independent matrix elements. The remaining matrix
elements can be computed by imposing rotational covariance. This is not as satisfactory as having
a covariant current operator that can be used with different initial and final states.

One feature of Dirac’s different representations of the dynamics is that they are all scattering
equivalent (related by an S-matrix preserving unitary transformation). This means that given gen-
erators in one representation it is possible to find equivalent generators in any other representation.
This equivalence suggests that it is useful to exploit the advantages of the light-front representation.

The interest in the light-front representation is motivated by properties of the light-front for-
mulation of quantum field theory. For free fields, light-front fields are constructed by changing
variables from three momenta to the three light-front components of the four momentum. One fea-
ture of the light-front field is that a canonical momentum field is not needed to separate the creation

3



P
o
S
(
L
C
2
0
1
9
)
0
0
9

Light front quantum theories W. N. Polyzou

and annihilation operators:

a(p̃) =
√

p+

2
θ(p+)φ(x+ = 0, p+,p⊥) a†(p̃) =

√
p+

2
θ(p+)φ(x+ = 0,−p+,p⊥).

What this means is that any operator that commutes with the field restricted to a light front must
be a constant multiple of the identity. This means that free fields restricted to the light front are
irreducible.

A related property of the free fields restricted to the light front is that the fields are independent
of the mass. For canonical fields, the canonical transformation that changes masses cannot be
implemented by a unitary transformation [3], while fields restricted to a light front are trivially
related by a unitary transformation [4].

Another property of light-front field theory follows because P+ is a kinematic operator sat-
isfying the spectral condition P+ ≥ 0. Interactions that preserve the kinematic symmetries must
commute with P+. This means that V |0〉 is an eigenstate of P+ with eigenvalue 0. It follows that

〈0|VV |0〉= 〈0|V |0〉〈0|V |0〉,

because there can be no contribution from states with absolutely continuous spectrum of P+ since
P+

i = 0 is a set of measure 0. This requires V |0〉 = |0〉〈0|V |0〉. Invariance of the vacuum can be
realized by a simple constant renormalization of P−, with the vacuum remaining the Fock vacuum.

The role of the Fock-vacuum in light-front dynamics can be best understood by consider-
ing Noether’s theorem on the light front. The Poincaré invariance of the action leads conserved
Noether currents. Integrating the “+” components of these currents over the light front, assuming
no contributions from the boundaries, means that all 10 Poincaré generators are independent of
x+. The expression for these generators involves fields on the light front and derivatives of these
fields. While the fields and derivatives tangent to the light front are all in the irreducible light-front
algebra, the derivatives of the fields normal to the light front are unconstrained.

This ambiguity is related to the problem with the inadequacy of the light front as an initial value
surface. This does not mean that the irreducibility cannot be exploited. It means the additional
information is needed to define the derivatives off of the light-front in terms of the irreducible
algebra on the light front. For a scalar field theory all of the normal derivatives cancel. In this case
all the generators can be expressed in terms of the operators in the irreducible light front algebra.
The dynamical generators have the form

K3 =
∫

x+=0
dx̃ :

(
4

∂φ(x)
∂x−

∂φ(x)
∂x−

x−− (∇∇∇⊥φ(x) ·∇∇∇⊥φ(x)+m2
φ(x)φ(x)+V (φ))x+

)
:

P− =
∫

x+=0
dx̃ :

(
∇∇∇⊥φ(x) ·∇∇∇⊥φ(x)+m2

φ(x)φ(x)+V (φ)
)

:

F i =
∫

x+=0
dx̃ :

(
(∇∇∇⊥φ(x) ·∇∇∇⊥φ(x)+m2

φ(x)φ(x)+V (φ))xi +2x−
∂φ(x)
∂x−

∂φ(x)
∂xi )

)
: .

K3 has a dynamical component, but it is multiplied by x+ which vanishes on the light front. Iterating
the light-front Heisenberg field equations, assuming that the commutation relations of the fields on
the light front agree with the free-field commutation relations,

[φ(x̃,x+ = 0),φ(ỹ,y+ = 0)] = i
π

4
δ (x⊥−y⊥)ε(x−− y−)
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results in a series in x+ with coefficients that involve fields and commutators of fields restricted to
the light front.

The expressions for the dynamical generators have the usual diseases in that products of fields
at the same point are ill-defined. For the case of free fields the light-front Heisenberg equations
are linear and can be solved, resulting in the correct expression for the field operator of mass m
in the light-front representation. Vacuum expectation values of products of these fields, no longer
restricted to the light front, in the trivial vacuum give the Wightman functions of the free field
theory. These are moments of the dynamical (mass-dependent) vacuum. While on one hand this
result is trivial, free fields with different masses live on different Hilbert spaces with different
vacuua. This shows that the correct result can still be obtained by using the trivial vacuum and the
light-front field algebra with different interactions.

In an interacting field theory additional information is necessary to define the theory. This
involves finding a non-perturbative way to define products of fields at the same point. Normally
non-trivial vacuua are due to the all creation operator terms in the Hamiltonian. In the case of a
φ 4(x) theory the creation operator part of the light-front P− has a term with general form∫

θ(p+)δ (p+)d p+

(p+)2 ∏ξi
∏dpi⊥dξiδ (∑pi⊥)δ (∑ξi−1)×

a†(ξ1 p+,p⊥1)a†(ξ2 p+,p⊥2)a†(ξ3 p+,p⊥3)a†(ξ4 p+,p⊥4).

While formally the δ (p+) suggests that the vacuum should remain trivial, this contribution is ill-
defined (and very singular) at p+ = 0. The fate of the trivial vacuum depends on what replaces
this operator. The singularities at p+ = 0 are not independent of the ultraviolet singularities of the
theory, since they are transformed into each other as the orientation of the light front is rotated.
Both need to be addressed in order to construct a self-adjoint P−.

When the theory has infrared singularities, additional contributions concentrated at P+ = 0
may be required to maintain equivalence with the canonical theory. These affect the interpretation
of the light-front vacuum. These zero-modes are required in perturbation theory. While these zero
modes disappear in a theory with cutoffs; it is not clear if there is a way to recover them as the
cutoff is removed. or if they have to be put in by hand.

References

[1] Wigner, Eugene P., On Unitary Representations of the Inhomogeneous Lorentz Group, Annals Math.
40(1939)149.

[2] Dirac, Paul A. M., Forms of Relativistic Dynamics, Rev. Mod. Phys. 21(1949)392.

[3] Haag, R., On quantum field theories, Kong. Dan. Vid. Sel. Mat. Fys. Med., 29N12(1955)1.

[4] Leutwyler, H., Klauder, J. R. and Streit, L, Quantum field theory on lightlike slabs, Nuovo Cimento.,
A66(1970)536.

5


