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1. Conformal symmetry in QCD

In the chiral limit and at tree-level, the QCD Lagrangian is invariant under conformal trans-
formations. This underlying conformal symmetry of QCD motivates the search for its gravity dual
according to Maldacena’s equation (AdS=CFT) which refers to an equivalence between weakly-
coupled gravitational theories in higher dimensional anti-de Sitter (AdS) space and strongly-coupled
conformal field theories (CFT) in physical spacetime [1]. In QCD, conformal invariance is explic-
itly broken by non-zero quark masses (m f ) and also beyond tree-level where renormalization gen-
erates a scheme-dependent mass scale: ΛQCD. Since the Higgs-generated quark masses are much
smaller than hadron masses, it is usually stated that ΛQCD sets the scale for hadron masses.

Yet, there is another way to generate a scale for the hadron masses even within tree-level,
massless QCD. A mass scale can appear in the Hamiltonian and equations of motion while the
underlying action remains conformally invariant as was first shown by de Alfaro, Fubini and Furlan
(dAFF) in conformal QM [2]. To apply the dAFF procedure in QCD, we need to reduce the
strongly-coupled multi-parton bound state problem in QCD to a two-parton QM-like bound state
problem. This is possible in light-front QCD where [3]

HQCD
LF |Ψ(P)〉= M2|Ψ(P)〉 (1.1)

can be reduced to a Schrödinger-like equation for the lowest quark-antiquark Fock state:(
k2
⊥+m2

f

x(1− x)
+Ueff(x,k⊥)

)
Ψ(x,k⊥,h, h̄) = M2

Ψ(x,k⊥,h, h̄) (1.2)

where Ψ(x,k⊥,h, h̄) = 〈qq̄ : x,k⊥,h, h̄|Ψ〉 is the valence wavefunction, with x being the light-front
momentum fraction carried by the quark, k⊥ is its transverse momentum and h its helicity (h̄ is
the helicity of the antiquark). At this point, there are no approximations and the effective potential
Ueff, which describes the quark-antiquark interaction as well as the effects of higher Fock states
on the lowest Fock state, is essentially unknown. To make further progress, two assumptions are
necessary. First that the helicity dependence of the wavefunction is non-dynamical, i.e.

Ψ(x,k⊥,h, h̄)→Ψ(x,k⊥)Shh̄ (1.3)

where Shh̄ is momentum-independent. For example, Shh̄ ∝ hδh,−h̄ for the pion. Second that, in the
chiral limit, the confinement potential is a function of the invariant quark-antiquark mass squared,
i.e.

M 2|m f→0 =
k2
⊥+��>

0
m f

2

x(1− x)
. (1.4)

Then, the wavefunction can be factorized as

Ψ(x,ζ ,ϕ) =
φ(ζ )√

2πζ
X(x)eiLϕ (1.5)

where ζ 2 = x(1− x)b2
⊥ is the 2-dimensional Fourier transform of M 2|m f→0. Eq. (1.2) then be-

comes (
− d2

dζ 2 −
1−4L2

4ζ 2 +Ueff(ζ )

)
φ(ζ ) = M2

φ(ζ ) . (1.6)
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If Ueff = 0, the Hamiltonian in Eq. (1.6) maps onto the conformal QM Hamiltonian considered by
dAFF [2]. Then, following dAFF, taking

Ueff(ζ ) = κ
4
ζ

2 (1.7)

introduces a mass scale κ in the Hamiltonian without spoiling the conformal invariance of the
underlying action. It is remarkable that the quadratic form of the confinement potential is uniquely
fixed by the dAFF mechanism of conformal symmetry breaking (at this point, there is no reference
to AdS space). For this reason, it is important to recap the underlying assumptions leading to
Eq. (1.7): no quantum loops, zero quark masses and the identification of ζ as the variable on
which the confinement potential depends. These three assumptions are encapsulated in the so-
called semiclassical approximation [4]. Here, we consider the latter to also include the assumption
of a non-dynamical spin wavefunction.

2. Light-front holography

In the semiclassical approximation, light-front QCD possesses a gravity dual. With ζ ↔ z,
where z is the 5th dimension of AdS5, and L2 ↔ (µR)2 + (2− J)2 where µ is a 5-dimensional
mass parameter and R is the radius of curvature of AdS5, Eq. (1.6) maps onto the classical wave
equation for freely propagating spin-J string modes in AdS [5]. The confining QCD potential is
then determined by the dilaton field which breaks conformal invariance in AdS: [4]

Ueff(ζ ) =
1
2

ϕ
′′(z)+

1
4

ϕ
′(z)2 +

2J−3
2z

ϕ
′(z) . (2.1)

To recover the quadratic effective potential dictated by the dAFF mechanism, the dilation field must
be chosen to be quadratic, i.e. ϕ(z) = κ2z2. Eq. (2.1) then yields

Ueff(ζ ) = κ
4
ζ

2 +2κ
2(J−1) . (2.2)

As can be seen, while the quadratic form of the potential is fixed by the dAFF mechanism, the
constant spin term emerges from the mapping to AdS space [6]. The mass scale κ which appears
in both the dilaton field and the confinement potential is called the AdS/QCD mass scale. With its
potential given by Eq. (2.2), Eq. (1.6) is referred to as the holographic Schrödinger Equation. Its
eigenvalues are:

M2
n,L,S = 4κ

2
(

n+L+
S
2

)
(2.3)

where J = L+S while its eigenfunctions,

φnL(ζ ) = κ
1+L

√
2n!

(n+L)!
ζ

1/2+L exp
(
−κ2ζ 2

2

)
LL

n(κ
2
ζ

2) , (2.4)

are normalized so that

∑
h,h̄

∫
d2bdx|Ψh,h̄(x,ζ )|2 = 1 . (2.5)

Eq. (2.5) embodies the assumption that the meson consists only of the leading quark-antiquark
Fock state.
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The first striking prediction is that the lowest lying bound state, with quantum numbers n =

L = S = 0, is massless: M2 = 0. This state is naturally identified with the pion since the pion mass
is expected to vanish in chiral limit. To completely specify the light-front wavefunction, we need
to fix X(x). This is done by matching the electromagnetic or gravitational form factor of composite
states in physical spacetime and in AdS5, resulting in X(x) =

√
x(1− x) [4].

Up to now, we have considered only quark-antiquark states, i.e. mesons. To make this ex-
plicit, let us write Ueff(ζ ) =UM(ζ ,κ2). The supersymmetrization of the holographic Schrödinger
Equation unifies mesons and baryons (considered as diquark-quark systems) as superpartners [7].
Just like in the supersymmetric formulation of ordinary QM [8], the partner potential to a harmonic
oscillator potential is a shifted harmonic oscillator potential:

UB(ζ ,κ
2) =UM(ζ ,κ2)+2κ

2 (2.6)

where our notation has anticipated the fact that Eq. (2.6) is the potential for baryons. Explicitly

UB(ζ ,κ
2) = κ

4
ζ

2 +2κ
2((LB +1)+SD−1) (2.7)

where SD is the lowest possible spin of the diquark in the baryon. Eq. (2.3) then generalizes to

M2
n, f = 4κ

2
(

n+ f +
1
2

)
(2.8)

where f = LB +1/2(1+SD) = LM−1/2(1−SM). This implies that mesons and baryons differing
by only one unit of orbital angular momentum (i.e. with LM = LB+1 and SM = SD) lie on identical
Regge trajectories. This degeneracy, although not exact, is indeed seen in spectroscopic data. Note
that once Eq. (2.2) is fixed by light-front holography, Eq. (2.7) is completely fixed by supersym-
metry without further reference to AdS5. On the other hand, light-front holography tells us that
a baryon has equal probability of being in the positive and negative chirality states, with orbital
angular momentum LB and LB + 1 respectively [4]. Therefore, in addition to mesons, there are
second bosonic superpartners to baryons with quantum numbers (LB,SD). These are interpreted as
tetraquarks (considered as diquark-antidiquark systems) with quantum numbers (LT =LB,ST = SD)

[9]. Note that the massless pion does not have a baryon superpartner.
The holographic wavefunction, Eq. (1.5), is a first approximation to the meson light-front

wavefunction which is a crucial input to predict various observables like charge radii, decay con-
stants, diffractive cross-sections as well as non-perturbative quantities like Form Factors (FF), Par-
ton Distribution Functions (PDFs), Distribution Amplitudes (DAs), Generalized Parton Distribu-
tions (GPDs) and Transverse Momentum Distributions (TMDs). In what follows, we shall focus
on predictions using the holographic meson wavefunction. For other applications of light-front
holography, see [10] and references therein.

3. Beyond the semiclassical approximation

The superconformal symmetry leading to Eq. (2.8) is broken by non-zero quark masses. Light
quark masses can be treated as a small perturbation shifting the hadronic masses by [4]

∆M2[m1, ...mn] = κ
4 ∂ lnF

∂κ2 (3.1)
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where

F [κ2] =
∫ 1

0
dx1...dxnδ

(
n

∑
i

xi−1

)
exp

(
− 1

κ2

n

∑
i

m2
i

xi

)
(3.2)

where n = 2 for mesons and n = 3 for baryons. This allows us to fix the u/d quark masses using
the fact that the physical pion mass Mπ = ∆M(mu/d) = 140 MeV. This gives mu/d = 46 MeV. The
strange quark mass can then be fixed using MK = ∆M(mu/d ,ms) = 494 MeV, yielding ms = 357
MeV. A global fit to all light meson and baryon spectroscopic data yields κ = 523± 24 MeV
[11] which we refer to as the universal AdS/QCD scale. Being scheme-independent, κ can be
viewed as being more fundamental than ΛQCD and indeed the latter can be predicted from the
former [12]. While κ is universal for light hadrons, it depends on the hadron mass (as expected
from Heavy Quark Effective Theory) for hadrons containing at least one heavy quark [13]. The
latter observation was already noted in earlier research [14, 15] even though the more recent work
[16, 9] seem to provide a more economical way (i.e. with less free parameters) to account for heavy
quarks. In particular, the only correction to the heavy hadron mass spectrum is that given by Eq.
(3.1), with no short-distance corrections as in [14, 15], despite the fact that conformal symmetry is
strongly broken by heavy quarks.

Eq. (2.4) tells us that the pion and the ρ meson have the same holographic wavefunction since
for both mesons, n = 1 and L = 0. With a universal κ , this leads to degenerate decay constants for
the two mesons, a prediction that is in contradiction with experiment. It has been argued that the
pion is a special case since it does not fall on a Regge trajectory [17] and, indeed in previous work
[17, 15, 18], a different κ and/or normalization condition (instead of Eq. (2.5)) were used only for
the pion. Nevertheless, these approaches cannot accommodate a non-zero holographic pion Boer-
Mulders TMD which results from the overlap between the L = 0 and L = 1 components of the pion
wavefunction [19]. These shortcomings can be overcome by taking into account dynamical spin
effects.1

The assumption is that bound state effects are fully captured by the holographic wavefunction
so that the spin wavefunction is that of a point-like meson coupling to a quark-antiquark pair.
Hence,

Ψ(x,k,h, h̄)→Ψ(x,k)Sh,h̄(x,k) (3.3)

where Ψ(x,k) is the holographic wavefunction in momentum space and

Sh,h̄(x,k) =
v̄h̄((1− x)P+,−k)√

1− x
Γ

uh(xP+,k)√
x

(3.4)

is the (point-like) meson-quark-antiquark vertex in light-front perturbation theory. In general, the
Dirac structure between the light-front spinors is given Γ = ε ·γ for vector mesons [21, 22] and Γ =

(P ·γ +BMP)γ
5 for pseudoscalar mesons [23, 24]. Here εµ is the polarization 4-vector of the vector

meson, Pµ(MP) is the 4-momentum (mass) of the pseudoscalar meson and B is a dimensionless
free parameter. It was shown in [21] that, with a spin structure given by Eq. (3.4), the HERA
data on diffractive ρ meson electroproduction prefer the holographic wavefunction with κ = 540
MeV (consistent with the universal value). Diffractive φ electroproduction can also be successfully
predicted [22] with the same value of κ and the best simultaneous description of diffractive ρ and φ

1Only the unpolarized pion TMD can be predicted with the holographic wavefunction with no dynamical spin [20].

4



P
o
S
(
L
C
2
0
1
9
)
0
1
1

An overview of LFH Ruben Sandapen

electroproduction data is achieved with [mu/d ,ms] = [46,140] MeV. The holographic DAs for ρ , φ

and K∗ have also been predicted and used to compute various observables in B decays: see [25] and
the references therein. For pseudoscalar mesons, Ref. [24] reports an excellent description of the
pion data with the universal κ and [mu/d ,ms] = [330,500] MeV. Ref. [23] cautions against using a
universal Bb for the pseudoscalar meson nonet: while the pion data prefer B≥ 1, the available kaon
data set prefers B = 0 while the situation is less clear for the η/η ′ system (even though the meson-
to-photon transition FF data prefer B ≥ 1). Further support for the spin-improved wavefunction
comes from the configurational entropy analysis of [26] and lattice data [27]. Alternative ansatzes
for the spin structure of mesons have been proposed in [28].

4. Summary

Superconformal light-front holography successfully predicts the main features of hadronic
spectroscopy especially the near mass degeneracy of mesons and baryons differing by one unit of
orbital angular momentum. Non-zero quark masses and dynamical spin effects can be accounted
for à posteriori leading to a successful description of a wide set of light meson data with a universal
AdS/QCD scale which governs both confinement and spectroscopy.
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